$CO_2$ 저장용 Sepiolite의 고온 열화학처리 및 특성평가

High Temperature Thermochemical Treatment and Characterization of Sepiolite for $CO_2$ Storage

  • 발행 : 2006.12.15

초록

Sepiolite was selected as a mineral carbonation candidate ore for carbon dioxide sequestration. Carbonation salt formation from alkaline earth metal ingredient needs to dehydroxylation of sepiolite at high temperature. An evident dehydroxylation was observed over $800^{\circ}C$ and the variations of sepiolite characteristics after high temperature treatment was synthetically evaluated. Remarkable weight loss were measured after high temperature thermochemical reaction then crystallographic and spectroscopic changes were analyzed. The resulted alkaline earth metal oxides could explained by dehydroxylation based on thermochemical reaction.

키워드

참고문헌

  1. C. Schmidt, S. Klara and R. Srivastava, 'DOE Carbon Sequestration Program', US Department of Energy. Proceeding of the Electric Utilities Environmental Conference 2002, Tucson, Arizona
  2. E.Bryant, 'Climate process and change', Cambridge, UK: Cambridge University Press, 1997. p. 209
  3. 김미선, 윤영수, 심상준, 박태현, 이정국, '각종 혐기성 미생물 발효에 의한 유기산 및 수소생 산', 한국수소 및 신에너지학회 논문집, Vol. 13, No. 4, 2002, p. 330
  4. 심규성, 김창희, 박기배, '물의 전기분해에 의한 수소 제조기술과 경제성 분석', 한국수소 및 신에너지학회 논문집, Vol. 15, No. 4, 2004, p. 324
  5. C. Jeprna and M. Munasinghe, 'Climate Change Policy', New York, NY: Cambridge University Press, 1998. p. 331
  6. R. Bajura, 'The role of carbon dioxide sequestration in the long term energy future', In: Fifth International Greenhouse Gas Technologies Conference, Cairns, Australia, Collingwood. VIC, AU: CSIRO Publishing, 2001. p. 52
  7. R. Pierce, 'Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the lEA Greenhouse Gas R&D programme', Energy Conversion and Management, Vol. 37, 1996, p. 665 https://doi.org/10.1016/0196-8904(95)00237-5
  8. P. Freund and W. Ormerod, 'Progress toward storage of carbon dioxide Energy Conversion and Management', Vol. 38, 1997, p. 199 https://doi.org/10.1016/S0196-8904(96)00269-5
  9. M. Peter, 'Impacts on the marine environment from direct and indirect ocean storage of CO2 Waste Management', Vol. 17, 1998, p. 323 https://doi.org/10.1016/S0956-053X(97)10043-5
  10. K. Cole, P. Freund and W. G. Ormerod, 'Predicting future variability of dissolved inorganic carbon in the ocean Fuel and Energy', Vol. 37, 1996, p. 145
  11. M. Holtz, P. Nance and R. Finley, 'Reduction of greenhouse gas emissions through CO2 EOR in Texas', Environ Geosci 2001, p. 99
  12. H. Koide and K. Yamazaki, 'Subsurface CO2 disposal with enhanced gas recovery and biochemical carbon recycling', Environ Geosci, 2001, p. 24
  13. K. Lackner, D. Butt and C. Wendt, 'Progress on binding CO2 in mineral substrates,' Energy Convers Manage, Vol. 38, 1997, p. 259 https://doi.org/10.1016/S0196-8904(96)00279-8
  14. K. Lackner, C. Wendt, D. Butt, E. Joyce and D. Sharp, 'Carbon dioxide disposal III carbonate minerals', Energy, Vol. 20, 1995, p. 1153 https://doi.org/10.1016/0360-5442(95)00071-N
  15. 최원경, 문승현, 조태환, 이재근, '이산화탄소 탄산염광물화용 사문석의 열처리 및 특성 평가', 한국수소 및 신에너지학회논문집, Vol. 16, 2005, No.1, pp. 74-81
  16. 최원경, 문승현, 조태환, 이재근, 'Mineral Carbonation 원료용 수활석 전처리에 대한연구', Vol. 16, 2005, No.3, pp. 277-283
  17. R. Schulze, M. Hill, R. Field, P. Papin, RHanrahan and D. Byler, 'Characterization of carbonated serpentine using XPS and TEM', Energy Conversion and Management, Vol. 45, 2004, p. 3169 https://doi.org/10.1016/j.enconman.2004.02.003
  18. J. Moulder, W. Stickle, P. Sobol and K. Bomben. Handbook of X-ray photoelectron spectroscopy, Eden Prairie Minnesota: Perkin.Elmer; 1992
  19. Y. Watanabe, K. Banno, M. Sugiura, 'Calcined sepiolite-supported Pt/Fe Catalyst', Applied Clay Science, Vol. 16, 2000, p. 59-71 https://doi.org/10.1016/S0169-1317(99)00043-5
  20. Changling He, Emil Makovicky, Bjame Osbae k, 'Thermal treatment and pozzolanic activity of sepiolite', Applied Clay Science, Vol. 10, 1996, pp. 337-349 https://doi.org/10.1016/0169-1317(95)00035-6