EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD

비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가

  • 명현국 (국민대학교 기계자동차공학부)
  • Published : 2006.03.01

Abstract

The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

Keywords

References

  1. Mathur, S.R. and Murthy, J.Y., 1997, 'ssure-Based Method for Unstructured Meshes,' Numerical Heat Transfer, Part B, Vol.31, p.195-215 https://doi.org/10.1080/10407799708915105
  2. Zwart, P.J., Raithby, G.D. and Raw, M.J., 1999, 'ntegrated Space-Time Finite Volume Method and its Application to Moving Boundary Problems,' J. Comp. Physics, Vol.154, p.497-519 https://doi.org/10.1006/jcph.1999.6324
  3. Muzaferija, S., 1994, 've Finite Volume Method for Flow Predictions nsing Unstructured Meshes and Multigrid Approach,' PhD Thesis, University of London
  4. Demirdzic, I. and Muzaferija, S., 1995, 'ical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis nsing Unstructured Moving Meshes with Cells of Arbitrary Topology,' Comput. Methods Appl. Mech. Engrg., Vol.125, p.235-255 https://doi.org/10.1016/0045-7825(95)00800-G
  5. Ferziger, J.H. and Peric, M., 2002, 'tational Methods for Fluid Dynamics, 3rd ed.,' Springer
  6. Davidson, L., 1996, 'sure Correction Method for Unstructured Meshes with Arbitrary Control Volumes,' Int. J. Numer. Methods Fluids, Vol.22, p.265-281 https://doi.org/10.1002/(SICI)1097-0363(19960229)22:4<265::AID-FLD359>3.0.CO;2-J
  7. 명현국, 김종태, 2005, '격자계를 사용하는 3차원 유동해석코드 개발(I) -수치해석방법 대한기계학회논문집 B권, 제29권, 제 9호, p.1049-1056
  8. 명현국, 2006, '비정렬 셀 중심 방법에서 확산플럭스의 새로운 수치근사방법,' 한국전산유체공학회지, 제11권, p.8-15
  9. Luo, H., Baum, J.D., and Lahner, R., 1993, ,Numerical Solution of the Euler Equations for Complex Aerodynamic Configuration Using Edge-Based Finite Element Scheme,, AIAA Paper 93-2933
  10. Jasak, H., Well er, H.G., and Gosman, A.D., 1999, 'High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes,' Int. J. Numer. Meth. Fluids, VoI.31, p.431-449 https://doi.org/10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
  11. Demirdzic, I., Lilek, Z. and Peric, M., 1992, 'Fluid Flow and Heat Transfer Test Problems for Non-Orthogonal Grids: Bench-Mark Solutions,' Int. J. Numer. Methods Fluids, Vol.15, p.329-354 https://doi.org/10.1002/fld.1650150306
  12. 명현국, 김종태, 김종은, 2005, '비정렬격자계를 사용하는 3차원 유동해석코드 개발(ll) -코드성능평가,' 대한기계학회논문집 B권, 제29권, 제9호, p.1057-1064