고양이 연령에 따른 발육단계별 난포의 분포와 전동난포의 배양

Distribution of Cat Follicles among Varying Ages and Preantral Follicles Maturation

  • 유일정 (전북대학교 수의과대학 수의학과) ;
  • ;
  • ;
  • 김용준 (전북대학교 수의과대학 수의학과) ;
  • 김인식 (전북대학교 수의과대학 수의학과) ;
  • 박영재 (전북대학교 수의과대학 수의학과)
  • Yu I. (College of Veterinary Medicine, Chonbuk National University) ;
  • Leibo S.P. (Audubon Center for Research of Endangered Species) ;
  • Dresser B.C (Audubon Center for Research of Endangered Species) ;
  • Kim Y.J. (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim I.S. (College of Veterinary Medicine, Chonbuk National University) ;
  • Park Y.J. (College of Veterinary Medicine, Chonbuk National University)
  • 발행 : 2006.03.01

초록

고양이의 연령에 따른 난포의 분포를 알아보고 난포의 배양과 난자 생산의 가능성을 알아보고자 0.3세부터 5세까지의 총 41 마리 고양이를 난소 적출술 후 사용하였다. 고양이 난소의 무게와 크기를 측정하고 난포의 분포를 알아보기 위해 난소를 10% formalin에 보관한 후 고정된 난소를 $3{\mu}m$-sections으로 자른 후 조직 슬라이드를 준비하여 hematoxylin와 eosin으로 염색하였다. 난포의 분포를 200 배율와 400 배율 현미경하에서 평가하였으며 난포를 원시 난포(primordial), 일차 난포(primary), 이행성 난포(transitional), 전동난포(preantral), 동난포(antral)로 분류하여 관찰하였다. 단순 기계적인 방법에 의해 전동난포(preantral follicles)를 분리하여 배양배지가 담긴 96 microliter plates well로 옮겨 배양하였다. 난포의 배양액은 Medium 199에 1% ITS(insulin, transferrin, selenium)를 첨가하고 10% FBS나 10% PVA를 첨가하여 사용하였으며 배양배지위에 mineral oil를 덮고 16일 동안 난포를 배양하였다. 난포의 크기는 4일마다 측정하였다. 0.3세부터 5세까지 고양이 난소의 무게는 0.1g에서 0.3g으로 증가하는 양상을 보이기는 했으나 유의적인 차이가 없었다. 난포의 분포는 고양이의 연령에 관계없이 원시난포의 분포가 그 외 난포들의 분포보다 높게 나타났다(p<0.05). 난포를 4일 이상 배양하였을 때 배양액의 조성성분과 관계없이 난포의 크기가 감소하였으며, 체외 배양된 난포로부터 적은 수의 난자만을 회수할 수 있었다. 많은 수의 원시 난포 등을 분리하기 위한 유용한 난포 분리법과 난포의 배양에 필요한 기타 성분들의 비교 연구가 이루어져야 할 것으로 생각되며 이러한 집 고양이를 이용한 기초 번식 기술은 미래에 멸종위기에 처한 고양이 과 동물을 보존하기 위한 중요한 방법이 될 것으로 기대된다.

This study was conducted to determine the distribution of cat follicles among varying ages and produce oocytes from preantral follicles cultured in vitro. We used ovaries from 41 cats ranging in age from 0.3 to 5 years. Ovaries were obtained from cats undergoing routine ovariectomy at local veterinary clinics. As a prelude to in vitro culture of preantral follicles, the length and the width and the weight of ovaries among cats of varying ages were measured. Ovaries were fixed in 10% formalin, embedded in paraffin, cut into $3{\mu}m$-sections, mounted on slides and stained with hematoxylin and eosin. Follicles were evaluated at 200X and 400X magnification. Distribution of follicles among cats of varying ages were evaluated according to follicle classification: primordial, primary, transitional, preantral and antral follicles. Preantral follicles were isolated by the simple mechanical procedure. Each follicle was cultured in a well containing $100{\mu}l$ of medium 199 supplemented with 10% fetal bovine serum (FBS) or polyvinylalcohol (PVA) for 16 days. Follicle diameters were measured under inverted microscope every 4 days. The length, the width and the weight of ovaries were increased gradually according to ages but there was not significant difference among cats of varying ages. Majority of follicles were primordial follicles (84%) regardless of cat ages (p<0.05). Follicle diameter increased until 4 days of culture. However, period longer than 4 days of culture in vitro had a deleterious effect on follicle survival regardless of supplement (FBS or PVA). A few oocytes were collected from preantral follicles cultured in vitro. These basic reproductive techniques in domestic cats can be a useful tool to save endangered feline species.

키워드

참고문헌

  1. Abir R, Roizman P, Fisch B, Nitke S, Okon E, Orvieto R and Ben Rafael Z. 1999. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum. Reprod., 14: 1299-1301 https://doi.org/10.1093/humrep/14.5.1299
  2. Baker SJ and Spears N. 1999. The role of intra-ovarian interactions in the regulation of follicle dominance. Hum. Reprod. Update, 5:153-165 https://doi.org/10.1093/humupd/5.2.153
  3. Bolamba D, Borden-Russ KD and Durrant BS. 1997. In vitro maturation of domestic dog oocytes cultured in and advanced preantral and early antral follicles. Theriogenology, 49:933-942
  4. Bristol Sk and Woodruff TK. 2004. Follicle-restricted compartmentalization of transforming growth factor beta superfamily ligands in the feline ovary. Biol. Reprod., 70:846-859 https://doi.org/10.1095/biolreprod.103.021857
  5. Cecconi S, Barboni B, Coccia M and Mattioli M. 1999. In vitro development of sheep preantral follicles. Biol. Reprod., 60:594-601 https://doi.org/10.1095/biolreprod60.3.594
  6. Cortvrindt Rand Smithz J. 2001. In vitro follicle growth: achievements in mammalian species. Reprod. Dom. Anim., 36:3-9 https://doi.org/10.1046/j.1439-0531.2001.00261.x
  7. Durant BS, Pratt NC, Russ KD and Bolamba D. 1998. Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenolgy, 49:917-932 https://doi.org/10.1016/S0093-691X(98)00041-7
  8. Fiegueiredo JR, Hulshof SCJ and Van den Hurk R. 1994. Preservation of oocyte and granulosa cell morphology in bovine preantral follicles cultured in vitro. Theriogenology, 41:1333-1346 https://doi.org/10.1016/0093-691X(94)90492-2
  9. Goodrowe KL, Wall RJ, O'brien SJ, Schmist PM and Wildt DE. 1988. Developmental cat follicular oocytes after fertilization in vitro. Biol. Reprod., 39:355-372 https://doi.org/10.1095/biolreprod39.2.355
  10. Jewgenow K. 1998. Role of media, protein and energy supplements on maintenance of morphology and DNA-synthesis of small preantral domestic cat follicles during short-term culture. Theriogenology, 49:1567-1577 https://doi.org/10.1016/S0093-691X(98)00102-2
  11. Jewgenow K and Stolte M. 1996. Isolation of preantral follicles from nondomestic cats-viability and ultrastructural investigations. Anim. Reprod. Sci., 44:183-193 https://doi.org/10.1016/0378-4320(96)01549-7
  12. Jewgenow K, Blottner S, Lengwinat T and Meyer HHD. 1997. New method for gamete rescue from gonads of nondomestic felids. J. Reprod. Fertil. Suppl., 51:33-39
  13. katska L, Aim Hand Rynska B. 2000. Nuclear configuration of bovine oocytes derived fresh and in vitro-cultured preantral and early antral ovarian follicles. Theriogenology, 54:247-260 https://doi.org/10.1016/S0093-691X(00)00345-9
  14. Newton H and Illingworth P. 2001. In-vitro growth of murine pre-antral follicles after isolation from cryopreserved ovarian tissue. Hum. Reprod., 16:423-429 https://doi.org/10.1093/humrep/16.3.423
  15. Oktay K, Schenken RS and Nelson JF. 1995. Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol. Reprod., 53:295-301 https://doi.org/10.1095/biolreprod53.2.295
  16. Pope CE. 2000. Embryo technology in conservation efforts for endangered felids. Theriogenology, 53:163-174 https://doi.org/10.1016/S0093-691X(99)00249-6
  17. Shuttleworth G, Broughton Pipkin F and Hunter MG. 2002. In vitro development of pig preantral follicles cultured in a serum-free medium and the effect of angiotensin II. Reproduction, 123: 807-818 https://doi.org/10.1530/rep.0.1230807
  18. Wolfe BA and Wildt DE. 1996. Development to blastocysts from in vitro maturation and fertilization of domestic cat oocytes following prolonged cold storage ex situ. J. Reprod. Fertil., 106:135-141 https://doi.org/10.1530/jrf.0.1060135
  19. Wood TC, Byers AP, Jennette BE and Wildt DE. 1995. Influence of protein and hormone supplementation on in vitro maturation and fertilization of domestic cat eggs. J. Reprod. Fertil., 104:315-323 https://doi.org/10.1530/jrf.0.1040315
  20. Wood TC, Montali RJ and Wildt DE. 1997. Follicle-oocyte atresia and temporal taphonomy in cold-stored domestic cat ovaries. Mol. Reprod. Dev., 46: 190-200 https://doi.org/10.1002/(SICI)1098-2795(199702)46:2<190::AID-MRD9>3.0.CO;2-L