Two-stage Serial Supply Chains under Fill Rate Constraints

2단계 시리얼 시스템의 Fill Rate 만족 방안

  • 권익현 (고려대학교 정보통신기술연구소) ;
  • 김성식 (고려대학교 산업시스템정보공학과)
  • Published : 2006.03.01

Abstract

In this paper, we investigate the problem of minimizing average inventory costs subject to a fill rate constraint in a two-stage serial inventory model with a normally distributed demand. Fill rate is the fraction of demand that is satisfied immediately from on-hand inventory. We first find the lower bounds of base-stock levels in each node by using the exact base-stock level that satisfies a fill rate in a single node model proposed by Sobel. And then, we extensively analyze the system and show that the cost function is convex. Using such convexity and some other useful properties, we can easily find optimal base-stock levels numerically.

Keywords

References

  1. Axsaer, S., Inventory Control, Kluwer Academic Publishers, Boston, (2000), pp. 151-157
  2. Axsaer, S., 'Note:Optimal Policies for Serial Inventory Systems under Fill Rate Constraints,' Management Science, Vol.49, No.2(2003), pp.247-253 https://doi.org/10.1287/mnsc.49.2.247.12746
  3. Boyaci, T. and G. Gallego, 'Serial Production/ Distribution Systems under Service Constraints,' Manufacturing & Service Operations Management, Vol.3, No.1(2001), pp.43-50 https://doi.org/10.1287/msom.3.1.43.10000
  4. Chen, F., 'Optimal Policies for Multi-Echelon Inventory Problems with Batch Ordering,' Operations Research, Vol.48, No.3(2000), pp.376-389 https://doi.org/10.1287/opre.48.3.376.12427
  5. Chopra, S. and P. Meindl, Supply Chain Management:Strategy, Planning, and Operation, Prentice Hall, 2003
  6. Christopher, M., Logistics and Supply Chain Management:Strategies for Reducing Cost and Improving Service, Prentice Hall, 2005
  7. Clark, A.J. and H. Scarf, 'Optimal Policies for a Multiechelon Inventory Problem,' Management Science, Vol.6, No.4(1960), pp. 475-490 https://doi.org/10.1287/mnsc.6.4.475
  8. Diks, E.B., de Kok, A.G. and A.G. Lagodimos, 'Multi-Echelon Systems:A Service Measure Perspective,' European Journal of Operational Research, Vol.95, No.2(1996), pp.241-263 https://doi.org/10.1016/S0377-2217(96)00120-8
  9. Diks, E.B. and A.G. de Kok, 'Optimal Control of a Divergent Multi-Echelon Inventory System,' European Journal of Operational Research, Vol.111, No.1(1998), pp.75-97 https://doi.org/10.1016/S0377-2217(97)00327-5
  10. Federgruen, A. and P.H. Zipkin, 'Approximations of Dynamic Multilocation Production and Inventory Problems,' Management Science, Vol.30, No.1(1984), pp.69-84 https://doi.org/10.1287/mnsc.30.1.69
  11. Federgruen, A. and P.H. Zipkin, 'Computational Issues in an Infinite-Horizon, Multiechelon Inventory Model,' Operations Research, Vol.32, No.4(1984), pp.818-836 https://doi.org/10.1287/opre.32.4.818
  12. Hadley, G. and T. Whitin, Analysis of Inventory Systems, Prentice-Hall, Englewood Cliffs, NJ, 1963
  13. Heijden, M.C. Van Der, 'Near Cost-Optimal Inventory Control Policies for Divergent Networks under Fill Rate Constraints,' International Journal of Production Economics, Vol.63, No.2(2000), pp.161-179 https://doi.org/10.1016/S0925-5273(99)00008-0
  14. Johnson, M.E., H.L. Lee, T. Davis, and R. Hall, 'Expressions for Item Fill Rates in Periodic Inventory Systems,' Naval Research Logistics, Vol.42, No.1(1995), pp. 57-80 https://doi.org/10.1002/1520-6750(199502)42:1<57::AID-NAV3220420107>3.0.CO;2-2
  15. Nahmias, S., Production and Operations Analysis, McGraw-Hill, New York, 2001
  16. Silver, E.A., 'A Modified Formula for Calculating Customer Service under Continuous Inventory Review,' AIIE Transactions, Vol.2, No.3(1970), pp.241-245 https://doi.org/10.1080/05695557008974758
  17. Sobel, M.J., 'Fill Rates of Single-Stage and Multistage Supply Systems,' Manufacturing & Service Operations Management, Vol.6, No.1(2004), pp.41-52 https://doi.org/10.1287/msom.1030.0027
  18. Van Houtum, G.J. and W.H.M. Zijm, 'Computational Procedures for Stochastic Multi-Echelon Production Systems,' International Journal of Production Economics, Vol.23, No.1-3(1991), pp.223-237 https://doi.org/10.1016/0925-5273(91)90065-2
  19. Van Houtum, G.J., K. Inderfurth, and W.H.M. Zijm, 'Material Coordination in Stochastic Multi-Echelon Systems,' European Journal of Operational Research, Vol.95, No.1(1996), pp.1-23 https://doi.org/10.1016/0377-2217(96)00080-X
  20. Vollmann, T.E., W.L. Berry, D.C. Whybark, and F.R. Jacobs, Manufacturing Planning and Control for Supply Chain Management, McGraw-Hill, New York, 2004
  21. Zipkin, P.H., Foundations of Inventory Management, McGraw-Hill, New York, 2000