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An Analysis of the Relationship between
Problem Characteristics and Algorithm Performance :
A Case Study on 0-1 Knapsack Problems

Jaehwan Yang* - Hyunsoo Kim**

& Abstract =

We perform a computational study on 0-1 knapsack problems generated under explicit correlation induction. A total
of 2000 100-variable test problems are solved. We use two solution methods : (1) a well known heuristic and (2)
a representative branch and bound type algorithm. Two different performance measures are considered : (1) the num-
ber of nodes needed to find an optimal solution and (2) the relative error of the heuristic solution. We also examine
the effect of different joint probability mass functions (pmfs) for the coefficient values on the performance of the
solution procedure,
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Algorithm/Heuristics, Explicitly Correlated Induction
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1. Introduction

When generating test problems to evaluate
solution methods for optimization problems, it is
common to assume that the coefficient types are
mutually independent and the marginal dis-
tribution of values for each coefficient type is
discrete uniform [27]. Moore [16] and Reilly [25]
address shortcomings of these two assumptions.
For example, Reilly [25] points out that the co-
efficient in actual instances of optimization prob-
lems may not be probabilistically independent or
uniformly distributed. In addition, Moore [16]
suggests that the test problems should be hard
enough to challenge many solution procedures so
that an accurate assessment of the procedures’
potential can be made. Test problems whose co-
efficients are generated under independently are
often moderately easy problems. Hooker [5,6]
argues that an empirical science of algorithms is
required for testing algorithms. He also points
out that to capture insight on algorithm perform-
ance, the experimental rigor of computational
testing must be improved.

To overcome shortcomings in common practi-
ces in the empirical testing of solution procedures
for discrete optimization problems, Peterson and
Reilly (23] and Reilly [26, 28] suggest a new way
to generate test problems with two types of co-
efficients based on the parametric envelope and
parametric mixtures for a bivariate discrete ran-
dom variable. No matter what kind of discrete
probability distributions we have for the ob-
jective function and constraint coefficients, their
method can generate a test problem with a speci-
fied target correlation between objective function
and constraint coefficients for problems such as
the 0-1 knapsack problem, the weighted set cov-

ering problem, and the generalized assignment

problem.

Earlier computation studies have shown that
the difficulty of a 0-1 knapsack problem, as mea-
sured by the number of iterations with a branch
and bound procedure, increases as the population
correlation between the objective function and
constraint coefficient increases(l, 4, 8-12, 16, 18,
25). By controlling the population correlation be-
tween coefficient types, it may be possible to
generate either a hard or an easy problem on
demand.

Hill and Reilly (7] study the effects of coefficient
correlation structure in two-dimensional knap-
sack problems on solution procedures. In their
study, population correlation structure among
two dimensional knapsack problems coeffi-
cients, the level of constraint slackness, and type
of correlations are varied. The CPLEX, version
2.1 is used as a representative branch and bound
solution procedure. Cario et al. [3] perform a sim-
ilar study on the general assignment problems,
and different solution procedures are tested in-
cluding CPLEX.

In this research, we perform a computational
study on the 0-1 knapsack problem. Even though
the structure of the problem is the simplest
among considered, many studies examine the
problem due to variety of its applications. Espe-
cially, most of them develop efficient algorithms
including heuristics (1, 4, 8-14, 20, 24, 29, 30]. While
all the studies perform deductive analysis to
show their algorithms’ superiority to others, test
problems are generated without careful consid-
eration for the correlation structure of the 0-1
knapsack problem.

For example, Martello and Toth [8-12] com-
pare the performance of solution methods for the



0-1 knapsack problem on test problems in which
the objective function and constraint are un-
correlated (independent), weakly correlated, and

strongly correlated. The weakly correlated and:

strongly correlated problems are generated with
the so-called implicit correlation induction. For
example, to generate test problems, Martello and
Toth [11] use the following forms :

* Uncorrelated problems :

A~ U{1,2,--,100}, C~ U{1,2,---,100},
» Weakly correlated problems :

A~ U{1,2,--,100}, C~ U{—10,—9,---,+10}+ 4,
» Strongly correlated problems :

A~ U{1,2,--,100}, C= A+10.

According to Moore and Reilly (22], the pop-
ulation correlation for the weakly correlated prob-
lems is more than 0.97, and the coefficients are
perfectly correlated in the strongly correlated
problems. Balas and Zemel [1] use the same idea
as Martello and Toth [11] to generate 0-1 knap-
sack problems. Martello et al. [13, 14} and Pisinger
[24] use the similar idea to generate their 0-1
knapsack problems. Earlier versions of research
use even a simpler method to generate the test
problems [20, 30].

Reilly [25] introduces a new method to ran-
domly generate 0-1 knapsack problems with a
specific target correlation, and Peterson and
Reilly (23] and Reilly {26, 28] refine the method
by Reilly [25] and suggest a way to generate test
problems with two types of coefficients based on
the parametric envelope and parametric mixtures
for a bivariate discrete random variable. Reilly
[25] also solves 200 25-variable 0-1 knapsack
problems with specific target correlations be-
tween objective function and constraint coefficients
such as 0, -1, and +1 by using a branch and bound

algorithm. There exist 23 test problems which

can not be solved by the algorithm due to ex-
ceeding the maximum number of iterations set
by the algorithm. He assumes 4 ~ U{1,2,---,50},
C~ U{1,2,-,100} and b= | Z¥ a/2].

In this study, we use the method suggested
by Reilly [28] to generate 2000 100-variable 0-1
knapsack problems with different target correla-
tions such as -1, ~0.75, -05, -0.25, 0, 0.25, 0.5,
.75, and 1 between objective function and con-
straint coefficients. Furthermore, we carefully
generate test problems with other parameters
such as different joint pmfs and ranges of co-
efficient values. Then, we examine the results
whether correlation structure and other parame-
ters have impact on algorithms we test. We ex-
pect that effect of coefficient correlation struc-
ture is bigger than that in previous studies due
to the simple structure of the 0-1 knapsack
problem. The 0-1 knapsack problem has one only
constraint, and the correlation of an objective
function coefficient to a constraint coefficient
seems to be strongly related to determine wheth-
er the associated decision variable has a value
of 1. Also, by having only one constraint, a con-
cern about existence of correlations between co-
efficients in different constraints can be removed.

The research is concerned with three possible
indicators of problem hardness : (1) the pop-
ulation correlation between the objective function
and constraint coefficient, (2) sample correlation
between the objective function and constraint
coefficient, and (3) the smallest joint probability
for any possible coefficient combination. The two
solution procedures are used to solve all of the
test problems : (1) a well known heuristic and
(2) a representative branch and bound algorithm,
commercially available CPLEX, version 3.0.
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The performance measures we use to evaluate
the solution method are: (1) the number of
branch and bound nodes from CPLEX needed to
find an optimal solution and (2) the relative error
of the heuristic solution.

In the next section, we review some back~
ground. Then, we specify assumptions and de~
scribe the types of test problems that we gen-
erate with different combinations of parameters.
A basic algorithm to generate test problems and
the algorithm we used to solve the test problems
are described in Section 5. Computational results
and analysis are presented in Section 6. The pa~
per concludes with a summary of the results and
limitations of this study.

2. Background

All basic ideas and techniques used in this
computational experiment are based on Reilly
[25-28], Moore and Reilly [18], and Peterson and
Reilly (23]. We review two important concepts
from those papers briefly. They are the para-
metric envelope for a bivariate discrete random
variable (4,C), sampling with explicitly induced
correlation using parametric mixtures.

2.1 Parametric Envelope for (4,0)

We summarize the idea of a parametric enve—
lope for a bivariate discrete random variable from
Peterson and Reilly [23].

Let £ {a) and F,{c) be the distribution of a dis-
crete random variable 4 with a finite support
Sy ={ay0a, } for ¢ <a, <-<a, and the dis-
tribution of a discrete random variable C with
finite support S = {q.¢. ¢, } for ¢ <g <-<q,,
respectively. Also, let 8 be the largest possible

value of the smallest joint probability over the
bivariate support S, xS, and let p=Corr(4,C).
Then, Peterson and Reilly [23] show that a curve
that plots ¢, which is a function of p, can be con-
structed by following the solution of a parametric
linear program.

The points on and under the parametric curve,
including the horizontal axis represent the set of
points that corresponds to all feasible combina-
tions of p and 6. Peterson and Reilly [23] call this
set of points the parametric envelope for (4,C).
At least one pmf for (4,C) is associated with
each point in the parametric envelope. Our com-—
putational experiment is based on this parametric
envelope concept. Specifically, we choose 25
points in the parametric envelope and use them
as the target combinations of p and 6 for our
computational experiment.

2.2 Sampling with Explicitly Induced Correla-
tion Based on the Parametric Mixtures

There are at least three methods for generat-
ing synthetic optimization problems : under the
assumption of mutual independence, with im-
plicitly induced correlation, and with explicitly
induced correlation. The assumption of mutual
independence has at least two critical short-
comings : the coefficients in actual instances of
optimization problems may not be probabilisti—
cally independent and the test problems gen-
erated under independence may not be hard
enough to provide a sufficient challenge for sol-
ution methods.

An alternative way to generate test problems
is to generate problems in which correlation is
implicitly induced between the coefficient types.
Moore and Reilly [18] use the term implicit in-
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duction of correlation to describe any test prob-
lem generation method in which a target pop-
ulation correlation is implied by specifying a
functional relationship between coefficient types.
They also refer to any generation method in
which target population is prespecified as explicit
correlation induction.

Reilly [27] points out that the synthetic prob-
lems whose coefficients are generated independ-
ently are too similar to one another to provide
a sufficiently diverse collection of test cases,
particularly when the synthetic problems are
large. He shows that this shortcoming can be
overcome by explicitly inducing correlation be-
tween the coefficient types for a variety of pop-
ulation correlation targets.

We can characterize a pmf for (4,C) when a
target population correlation, m, for (4,C) is
specified by mixing values of (4,C) generated
under independence and values of (4,C) gen-
erated with extreme correlation, fn., OT Aui,, the
maximum and minimum possible values for p,
respectively. The following is the form of these

conventional mixtures :

(1= g/ g M (@ f, () +(0y/ gy V9imax (@)
if pp=0;

9lnclo) =11 /o Y (@)f, ) ol Vs ()
if g <0;

where f,(a) and f,(c) are the marginal pmfs for
A and C g,,, =(ac) is the maximum correla-
tion pmf for (4,C), and g,;, = (a,c) is the mini-
mum correlation pmf for (4, C). See Moore [15,
16] for its application.

Peterson and Reilly [23] suggest an alternative
to conventional mixtures (1). Let ¢ = argmin,{f,
()}, 7 = argmin;{f, ()}, and & =7, (a,)f, ().

Consider.

!J(avclpo’eo) = A(]fl (a)fZ (C) +/\mingmiu (a’c)
= Ams.xgmax (a,c), (2)

where
X =0/8, Apin = (A= 00/6")000x = 26)/ Oax = Prin)s
and A, = ~(1=6,/6)p,1.) (Bax ~ Puin)
where 6, is a target value of 6. If (a,4,) is a
point in the parametric envelope for (4,C) such
that (1—6,/6")p;0 <o <(1-6,/6")p,.. and 6, <
¢, then they show that g(a,clg,8,) is a unique
probabilistic mixture for (4,C).

Now, consider the following condition which
Peterson and Reilly [23] and Reilly [27] refer to
as a mixing condition :

Imin (a‘i*’cj*)zgmax (az*’%*)zo (3)

They show that if the mixing condition (3) is
satisfied, then 6=4¢, for pmf (2). Regardless of
whether (3) is satisfied, p=p, for pmf (2).

Peterson and Reilly [23] call the pmf (2) a
parametric mixture. In our computational experi-
ment, sampling with explicitly induced correla-
tion based on parametric mixtures is used to

generate 0-1 knapsack problems.

3. Assumptions

In this study, we assume that 4 and C are dis~
crete random variables such that A~ U{j, +1,
G +20 0+t and C~ UGy + 1,5, +2, 5 +m ). It
follows that u, =j +{ny +1)/2, o = —1)/12,
He =34y +(ny +1)/2, and o = (n —1)/12. Peterson
and Reilly [23] show that when 4 and € are uni-
formly distributed, the parametric envelope is an
isosceles triangle symmetric about p=0. The
three points on the corners are (0,(mn,)-!),

(Paar0), and (p,:,,0). Let 6 =(nn,)-1. See [Figure
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1] for a representation of the parametric envelope
for (4,C).

(77477«2)_1

| .
»
o

Priin Proax

[Figure 1] Parametric envelope for (4,C)

We also assume that n, 2n, =3 and m=n,/n,
is integer. In this case, Relly [25, 26] and Peterson
and Reilly [23] characterize the minimum-and
maximum-correlation pmfs for (4,C) as follows :

1 if mln +a—3j) <(c—3,)
gmin(aac): n?’ Sm(nl-f—a—jl-i-l) ;

0 otherwise ;
and
1 if mla—j —1) <(e—j)
Imax (a,c) =9 n?’ < m(a_jl
0 otherwise
Furthermore,

Pmax =M =1)/(n2 —1))

and pu;, = Pua.- The mixing condition (3) is
satisfied.

For any point (p,8,) in the parametric enve-
lope, there is a unique pmf that is mixture of
F1@)fy(e), gnin (are), and g, (a,c) [23,25-27]. With

our assumptions,

N =0,/6" =m0y, A = U=y = 0/ p D12,

and
)‘max = (1 —n1n290 + (pO/pmax ))/2

for parametric mixtures (2). With (2), A,, A
and A,

min?

are used to generate test problems for

ax

0-1 knapsack problem.

4. Test Problem Description

In this study, we solve 2000 100-variable ran-
domly generated 0-1 knapsack problems. The
0-1 knapsack problem has the following form :

Maximize
)y
C.T.
=1 777
subject to
kil
Ea] z; < b
j=1
zj=Oor 1, 7=12,---n,
where

_{1 if dtemn j is induded in the knapsack ;
0 otherwise ;

¢; >0 is the value of item j ; o; >0 is the weight
of item 3 ; b 1s the capacity of the knapsack ;
and n is the number of items to be considered
for inclusion in the knapsack.

The 0-1 knapsack problem is known to be NP-
complete. It is also known that the correlation
between constraint coefficients and objective
function coefficients has a strong effect on the
number of iterations required to solve it with an
implicit enumeration (branch and bound) routine.

We select 25 points from the parametric enve-
lope, ie., 25 different target combinations of p
and 6 (see [Figure 2]1). The points are evenly
separated horizontally as well as vertically. We
select nine points from the bottom of the triangle
and one point from the top of the triangle.
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Between the top and the bottom, we select the

number of points which is proportional to the
width of the triangle at the specific ¢ value.
These points are chosen to represent possible
combinations of p and 6. We generate 80
100-variable knapsack problems to represent
each point by using sampling with explicitly in-
duced correlation based on parametric mixtures.

In order to see whether different combinations
of m, n, n,, j,, and j, have an impact on the num-
ber of iterations to solve test problems with a
branch and bound routine, we consider 16 differ-
ent combinations of m, n,, ny, 5, and j,. We sum-
marize those 16 combinations in <Table 1>. For
each combination, 125 100~variable 0-1 knapsack
problems are generated.

As a result, each set of 80 problems, which
represents 25 different target combinations of p
and ¢, has 16 different combinations of m, n,, n,,
4> and 4. Hence, five problems in each set of
80 problems have a unique combination of m, n,,
ny, 4y, and j. Similarly, each set of 125 problems,
which represents 16 different combinations of
m, ny, ny, Gy, and j,, has 25 different target combi-

nations of p and 4. Hence, five problems in each

3pmin Pmin Prin

4 2 4

Punin

set of 80 problems have a unique target combina-
tion of p and 6.

In all of our test problems, the constant b, i.e.,
the right hand side of the constraint, is calculated
as follows :

1 k(3
b= fEZaJ] .
=1

(Table 1> All combinations of m, n;, ny, 7, and 7,

Case m 7 n, A Jy
1 10 100 1000 0 0
2 10 100 1000 100 1000
3 10 100 1000 100 0
4 10 100 1000 0 1000
5 10 10 100 0 0
6 10 10 100 10 100
7 10 10 100 10 0
8 10 10 100 0 100
9 1 1000 1000 0 0
10 1 1000 1000 1000 1000
1 1 1000 1000 1000 0
12 1 1000 1000 0 1000
13 1 100 100 0 0
14 1 100 100 100 100
15 1 100 100 100 0
16 1 100 100 0 100

Prax Prax 3pmax
4 9 4 max

[Figure 2] 25 points from the parametric envelope



5. Generating and Solving
Test Problems

In this section, we describe the algorithm
GENERS which is used to generate test problems
and the multi-phase solution method that is used
to solve those problems.

QOur solution method is chosen based on avail-
ability and general acceptance of the procedures.
They are a primal heuristic from Nemhauser and
Wolsey [21] and CPLEX from ILOG, Inc.. CPLEX
is contained in many commercially available
packages and is available as a stand-alone pro-
duct. Specifically, the mixed-integer optimizer in
CPLEX, version 8.0 is used for our computational
experiment. All of the necessary programs are
coded in C, and the program is available upon
request.

5.1 Generating Test Problems

The following algorithm GENERS is based on
a similar procedure in Reilly [27] where he as-
sumes, j =0 and j, =0.

Procedure GENERS

1. Generate u,,uyuy ~ U(0,1)

2. a—lnuy | +j5 +1

3 If uy <X ce—lmu, ) +5+1, and go to Step 6.

4 If wy=1-X,,,, c—Llnu | +5+1 and go to
Step 6.

5 ce—ln(1—u) ] +4+1,

6. Return (a,c).

A random number seed, 98765, is used to get
pseudo random numbers for all 16 combina-
tions of m, n, ny, 5, and 7. The GENERS repeats
100 times to generate one test problem with a

combination of m, n;, ny, 5, and j, since the num-
ber of variable is 100. A detailed C++ code is
available upon request.

5.2 Solving Test Problems

The decision variables in each test problem are
sorted so that ¢/¢ 2¢y /e, for i=1,2,-,99.

5.2.1 Primal Heuristic

After the sorting procedure is executed and the
LP (Linear Programming) relaxation is solved,
a primal greedy heuristic ([21], p. 452) is applied
to the test problem.

Let M and M denote sets of the variable z;
whose values are 1 and 0, respectively, in the
solution to the LP relaxation. Then, z;=1 for
jeN={1,2r—-1}, ;=0 for j€e N°={r+1,r+
2,0}, and z, =(b—,_ 1 a;/q.) is the solution to
the LP relaxation for re {1,2--n}. Let
j=1,2,--,n, represent the heuristic solution. The
following is the statement of the primal heuristic
[21] :

Primal Heuristic

1. Set z=1 for all j€ &, and z,=0.

2. Set b—b—32,_ .10 and j=r+1.

3. If ¢;>b, set z;=0; otherwise, set zAj=1 and
beb—aj.

4. If j<n, j—j+1 and go to Step 3 ; otherwise,
stop.

Basically, the primal heuristic above uses the
following idea. By solving the LP relaxation, we
can identify critical index, r. After subtracting
all constraint coefficients whose indices are less
than r from the original right hand side, we set

the index of z; at r+1 and try to fix z; to 1 by



subtracting the coefficient of z; from the re-
mainder of the right hand side. We continue to
increase the index until the updated right hand
side would become negative if any more varia-
bles were fixed at 1.

In Section 5, we examine the relative errors
of this heuristic by comparing the optimal values

with the heuristic values.

5.2.2 A Representative Algorithm : CPLEX

The mixed integer optimizer in CPLEX, ver-
sion 80, is used to solve the test problems. The
number of nodes is used in this study to measure
CPLEX performance. Note that Hill and Reilly [7]
and Cario et al [3] also used the number of
CPLEX nodes to measure the hardness of their

test problems.

6. Computational Results
and Analysis

In this section, we summarize and analyze our
results. In the first subsection, we consider three
indicators of problem hardness, (1) the pop-
ulation correlation (p) between objective function
and constraint coefficients, (2) the sample corre-
lation, and (3) the smallest joint probability ()
for any possible coefficient combination. In the
next section, we compare the results with differ-
ent combinations of m, n;, ny, 5, and 7. Finally,
we examine the relative errors of the primal heu-
ristic in the third subsection.

6.1 Three Indicators of Problem Hardness

We consider three problem hardness indicators
or independent variables in this subsection. They
are the population correlation (p) between ob-

} 84 : 0-1 Knapsack Ao 3} 2}
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jective function and constraint coefficients, the
sample correlation, and the smallest joint proba-
bility (#) for any possible coefficient combina—
tion. The number of CPLEX nodes is the depend-
ent variable in this subsection.

Because it takes much less than a second to
calculate these indicators or they are known in
advance, if they predict the problem hardness of
the test problems well, we can estimate whether
any problem is easy or hard to solve and perhaps
choose a solution method or heuristic accord-
ingly. By understanding the relationship between
6 and p and problem hardness, we may be able
to generate test problems that are likely to be
difficult to solve.

Determining each indicator for the test prob-
lems is much easier than solving those problems.
If we can find a good indicator, then we can gen-
erate test problems which can be characterized
by that indicator. In other words, we may gen-
erate synthetic discrete optimization test prob-

lems with desired hardness properties.

6.1.1 Correlation, p

Each cell in <Table 2> represents a target
combination of p and ¢ from parametric envelope.
The value in each cell is obtained by taking the
average of the number of nodes over 80 test
problems and it is presented with associated
standard error. The data for numbers of nodes
are from running CPLEX optimization. Every
single problem is successfully solved by CPLEX.
The maximum number of nodes is 165093832,
which is obtained when p=p,,, and 6=0.

As expected, the average number of nodes
clearly increase as the target correlations in-
crease, and the maximum number of nodes oc-

curs when p=p,,,. This trend is also clear for



each 6 € {0,6°/4,6°/2,3¢"/4,6°}. Hence, we can con-
clude that with larger target correlations, we

have better chance to generate harder test prob-
lems for CPLEX.

6.1.2 Sample Correlation

The values of average sample correlation in
<Table 3> are nearly the same as the corre-
sponding target population correlations, even
though there is some sampling error evident in
each cell. This confirms that our generation pro—

cedure for testing procedure works well for the

(Table 2) The average number

0-1 knapsack problem.

In [Figure 3], there is a plot of sample correla-
tions vs. Log (number of iterations). We can see
a clear trend that many hard problems are asso-
ciated with large sample correlation, and espe-
cially ‘very hard problems’ are associated with
correlations close to 1.

Hence, we can affirm the idea about the effect
of the correlation between 4 and C on the per-
formance of CPLEX routine. The number of no-
des seems to increase exponentially as the sam-

ple correlation between A4 and C increases.

of nodes (standard error)

3pmin Pmin Prmin Pmax Pmax 3pmax
Prin 4 9 4 O 4 9 4 Pmax AVg
39
v (224) 3
36+ 29 8 74 6
4 (152) (467) (6.54)
o* 3 66 68 106 112 8
2 (20D | 393 (6.23) (6.34) (6.99)
o 4H 57 69 90 133 236 5281 852
4 (29 (414) (4.23) (8.70) (12.32) (34.00) (86061)
0 12 135 62 492 4740 4215 30765 22427 4069407 459139
(092) | (2925) | (373) | 6275 | (11597) | (807.9) | (64429) | (4111.1) | (636374)
Avg. 12 0 52 164 1003 1132 103838 1384 4069407 165553
(Table 3) Sample correlation (standard error)
P 3pmin Prmin Prmin O Prax Prax 3pmax P
min 4 2 4 4 2 4 max
. 0011
(0.0029)
360% 0244 | 0009 0.240
4 (0.0032) (0.0033) (0.0034)
o 0474 0.248 0.020 0.258 0503
2 (0.0032) | (0.0032) | (0.0035) | (0.0037) | (0.0027)
o 0.763 0525 0.260 0.016 0.235 0500 0.757
4 (0.0024) | (0.0030) | (0.0033) | (0.0036) | (0.0036) | (0.0028) | (0.0020)
0 0.999 0.750 0534 0.245 0.007 0.236 0.491 0.766 0.99
(0.0001) (0.0026) (0.0031) (0.0035) (0.0037) (0.0042) (0.0032) (0.0023) (0.0001)
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[Figure 3] Sample correlation vs. log (the number of nodes)

6.1.3 Minimum Joint Probability, &

The smallest joint probability for any possible
combination of coefficients, 6, is the third in-
dicator of problem hardness. From <Table 2>,
we can clearly see that the smaller value of ¢
leads to a greater average number of CPLEX
nodes. This trend can be seen more clearly if we
fix target correlation and compare the numbers
of nodes in the same column. As a result, we
conclude that the number of iterations increases

as 0 decreases.

6.2 Comparing Result with Different Combi-
nations of m, ny, ny, 7;, and 7.

We set up 16 different combinations of co-
efficient range parameters to look at the effect
of each parameter m, n,, n,, j;, and 4, on the num-
ber of nodes to solve test problems.

<Table 4> summarizes the average number of
CPLEX nodes for different », and n, combina-
tions and the number of nodes in each cell is cal-
culated by taking the average over 500 problems.
The result shows that given m value, problems
with larger », and n, values are harder than
those with smaller », and n,.

Also, we can observe that the test problems
with larger min{n,, n,} seem to be harder than

those with smaller min{n,, n,}.

(Table 4> The average number of nodes for com-
binations of n, and n,

{ny,my)
(100,1000) (10,100 (1000,1000) (100,100)
26996 1525 634830.3 326

We summarize the average number of nodes
for different combinations of m, n,, n,, j,, and 3



in <Table 5>.

The average number of nodes is 13506 when
m=10 and 317603 when m=1. So, the problems
generated with m=1 are more difficult to solve
than those generated with m=10. This trend is
clearer if we compare Case 1 with Case 8, Case
2 with Case 9, Case 3 with Case 10 and etc. in
<Table 5>.

The results also indicate that when we have
larger », and =,, the test problems for which ei-
ther j, =0 or j, =0 are more difficult than the
problems for which both 5 =0 and 4, =0 or both
4 >0 and j >0. Moreover, when we have larger
n, and n,, the test problems for which 7, =0 only
are more difficult than the problems for which
4 =0 only.

(Table 5) The number of nodes (standard error)
for combinations of m, ny, ny, 5; and .

Coel g ooy | ™| " | ™| |
1 23 (2.01) 10 [ 100 110001 O 0
2 155 (863) 10 100 | 1000 | 100 | 1000
3 616 (81.31) 10 | 100 {1000 | 100 | ©
4 | 107190 (29901.46) | 10 | 100 | 1000 O | 1000
5 1 (013) 10 10 {100 | © 0
6 26 (2.37) 10 10 | 100 } 10 ) 100
7 23 (2.20) 10| 10 {100 ] 10 | ©
8 11 (1.20) 1010 | 100 0 | 100
9 19 (1.76) 1 1100010001 O 0
10 116 (870 1 {1000 { 1000 | 1000 | 1000
11 | 35708 (76769) | 1 |1000 100010001 O
12 | 2503657 (640403.19)| 1 | 1000|1000 O 1000
13 10 (0.95) 1100|100 0 0
14 212 (30.23) 14100100 | 100 | 100
15 529 (133.73) 1|1001]100 100 O
16 563 (134.19) 1]100|100( O [100

After observing <Table 5>, we may conclude

that both =, n, and j;, 4, play roles to determine

the hardness of test problems.

6.3 Relative Error of the Primal Heuristic
Algorithm

Calculating the relative error for the heuristic
is worthwhile to do because we can see how the
heuristic works with different combinations of ¢
and p. Let the optimal value of the test problem
be z*, the heuristic value of the test problems

be z, and the relative error be

-z
*

2*

4

From <Table 6> and <Table 7>, we can not
observe any clear trend in the relative error; all
numbers are around 0.002~0.004 with standard
error of about 0.0001. We highly suspect that the
number of variables in our problem is relatively
too big to see differences in relative errors. In
other words, making a couple of bad selections
has relatively small impact on the optimal value
of 0-1 knapsack problem when the problem size
is large compared to a small problem. To support
this conjecture, we solve additional 2000 10-vari-
able 0-1 knapsack problems with the same as-
sumption we use for the 2000 100-varible prob-
lems. The result is presented in <Table 8> and
<Table 9> in Appendix A. We can see that the
average relative errors increase as p increases
in <Table 8>. In <Table 9>, the results indicate
that when we have n, >0, n, >0, j, >0 and j, >0,
the test problems seem to be more difficult than
other cases. Also, with the same », and n,, the
test problems with either j, =0 and j >0 are
more difficult than the problems with both j, >0
and j, =0. Moreover, when we have both j =0
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{Table 6) The average relative errors (standard error) when n =100

3pm'1n Pmin Prin Pmax Prax 3pmax
f I B R R 1 2 1 P
o 0.0025
(0.0001)
3¢* 00028 | 00033 | 00030
4 (0.0001) | (0.0001) | (0.0001)
o 0.0022 0.0029 0.0032 0.0032 0.0024
2 (00001 | (0.0001) | (0.0001) | (0.000D) | (0.0001)
o 0.0020 0.0029 0.0032 0.0030 0.0033 0.0031 0.0032
4 0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.000D) | (0.0001)
0 0.0000 0.0027 0.0105 0.0026 0.0031 0.0028 0.0025 0.0029 0.0025
(0.0000) | (00001 | ©0020) | (0000L) | (000D | (OOOOL) | (0.000D) | (0.0001) | (0.000D)

(Table 7> The average relative errors (standard
error) for combinations of m, ny, ny, J

and j, when n=100,

Cose| o | ™ | ™ | ™ | 5| 3
1 0.0197 (0.0011) 10 | 100 [1000| 0 | O
2 0.0292 (0.0011) 10 | 100 | 1000 | 100 | 1000
3 0.0040 (0.0006) 10 {100 {1000} 100§ O
4 0.1973 (0.0009) 10 | 100 | 1000 1000
5 0.0099 (0.0007) 10 10)10)] 010
6 0.0274 (0.0012) 10 | 10 | 100 | 10 | 100
7 0.0105 (0.0021) 10 | 10 100 10 | ©
8 0.0178 (0.0009) 10 | 10 | 100 ] 0 | 100
9 0.0256 (0.0015) 1 (1000|1000 O | O
10 0.0374 (0.0013) 1 11000 | 1000 | 1000 | 1000
11 0.0086 (0.0007) 1 {10001000{1000] 0
12 | 00220 (0.0010) 1 }1000}1000} O |1000
13 | 00251 (0.0014) 1 (100100010
14 | 00292 (0.0012) 1 {100 | 100 | 100 | 100
15 | 00069 (0.0006) 1 7100|100 |100| O
16 | 0.0226 (0.0010) 1 [100]100( O | 100

and j, =0, the test problems with m=1 seem to
be more difficult than the problems with m =10,

The result also may be due to the simple
structure of the knapsack problem because even

the simple heuristic can provide relatively good

approximation to the optimal solution as the
number of variables increases. Hence, we may
conclude that the performance of the heuristic in
terms of relative errors does not have any clear
relationship with the parameters we controlled
when test problems are relatively large.

7. Discussions

The computational experiment was performed
to determine the effects of different parameters
such as 6, p, m, ny, n,,5,, and j, for 0-1 knapsack
problem on the performance of an exact and a
heuristic solution procedure for the 0-1 knapsack
problem. The test problems were generated with
explicitly induced correlation based on para-
metric mixtures.

The results for 2000 100-variable test prob-
lems generated indicate that performance of
CPLEX solution procedures generally degrades
as the target correlation between the objective
function and the constraint coefficients increases
from p,;, 10 Puae. The performance of the CPLEX
solution performance also degrades as the target
0 decreases from ¢ to 0.

We set up 16 different combinations of co-



efficient range parameters to look at the effect

of each parafneter m, ny, ny, G, and 4, on the num-
ber of nodes to solve test problems. The result
shows that given m value, problems with larger
n, and n, values are harder than those with
smaller », and n,. Also, we can observe that the
test problems with larger min{n,,n,} seems to be
harder than those with smaller min{n;,n,}.

The result indicates that problems generated
with m=1 are more difficult to solve than those
generated with m=10. Moreover, different com-
binations of j and j also lead to different hard-
ness of the test problems.

We could not find any clear trend among rela-
tive errors for the heuristic but we may con-
jecture that if the problem size is reasonably
large, the relative error from the primal heuristic
is small regardless of the combinations of ¢ and
p. To support this idea, we solve additional 2000
10-variable 0-1 knapsack problem with the same
assumption we use for the 2000 100-varible
problems. The result is presented in _<Table 8>
and <Table 9> in Appendix A.

When conducting computational experiments,
we recommend that synthetic problems be gen-—
erated carefully by using the method such as
generation with the explicitly induced correla—
tion. More challenging problems can be gen-—
erated with this type of generation and can lead
to a better understanding of the capabilities and
limitations of the solution method(s) begin
evaluated. Additionally, the experiment will pro—
vide a clearer indication of the effect of correla-
tions [3]. Several researches provide recom-
mendations for computational experiment in-
cluding performing careful pilot studies to identi-
fy the most crucial factors and treatment levels

for the subsequent experiment (2, 3, 7.

For the 0-1 knapsack problems, we recom-
mend any future computational experiment in-
cludes different combinations of 9, p, m, n, n,,3;,
and j, as we performed. Also, authors may try
different right hand side levels and different
number of variables to cover some of the unused
factors in our experiment.

We admit that generalization of the result in
this paper has a few important limitations.
There are many different algorithms available
for 0-1 knapsack problems including heuristics.
For some algorithms, correlation structure of
the problem is not related to performance of the
algorithm. For example, a typical dynamic pro-
gramming (DP) algorithm for 0-1 knapsack
problems runs in O(nb) time, and it is clear that
the best indicators of problem hardness when
we use DP algorithm are the number of varia-
bles and right hand side value. Hence, when the
run time for an algorithm can be easily recog—
nized in terms of given parameters, we do not
recommend the approach which is used in the
paper.

Another limitation may be the types of prob-
lems which we can apply our result to. Some
problems may have just one type of coefficients
so that it may be impossible to apply our
approach. For the case of a two machine parallel
shop scheduling problem with the objective of
minimizing makespan, the objective function can
be just one variable with a coefficient value of
one and all coefficients of constraints can be 1
or -1. Other real world problems may be too
complicated to apply our approach because there
exist several different types of constraints with
different coefficient values. Hence, care must be
taken when the result is applied to other types
of problems.



A BT 4328 E 43 5 7 IA) B¢ 24 : 0-1 Knapsack ¥

References

f1] Balas, E. and E. Zemeal, “An Algorithm for
Large Zero-One Knapsack Problems,” Oper-
ations Research, Vol.28, No.4(1980), pp.1130-
1154,

(2] Barr, R.S,, B.L. Golden, J.P. Kelly, M.G.C.
Resende, and W.R. Stewart Jr., “Designing
and Reporting on Computational Experi-
ments with Heuristic Methods,” Journal of
Heuristics, Vol.l, No.1(1995), pp.9-32.

[3] Cario, M.C., ].J. Clifford, R.R. Hill, J. Yang,
K. Yang, and C.H. Reilly, “An Investigation
of the Relationship between Problem Charac-
teristics and Algorithm Performance : a
Case Study of the GAP,” IIE Transactions,
Vol.34, No.3(2002), pp.297-312.

[4] Fayard, D. and G. Plateau, “An Algorithm
for the Solution of the 0-1 Knapsack Prob-
lem,” Computing, Vol.28(1982), pp.269-287.

[5] Hooker, J.N., “Needed : an Empirical Sci-
ence of Algorithms,” Operations Research,
Vol42, No.2(1994), pp.201-212.

[6] Hooker, J.N., “Testing Heuristics; We Have
It All Wrong,” Journal of Heuristics, Vol.1,
No.1(1995), pp.33-32.

{7] Hill, RR. and CH. Reilly, “The Effect of
Coefficient Correlation Structure in Two-
Dimensional Knapsack Problems on Solu-
tion Procedure Performance,” Operations
Research, Vol.46, No.2(2000), pp.302-317.

(8] Martello, S. and P. Toth, “Algorithms for
the Solution of the 0-1 Single Knapsack
Problem,” Computing, Vol.21(1978), pp.81-
86.

[9] Martello, S. and P. Toth, “Algorithms for
Knapsack Problems,” Surveys in Combina-
torial Optimization, pp.213-257, Elsevier Sci-

Aol B3I Abe AT 69
B Haes drpy

ence Publishers B.V., Amsterdam, Nether-
lands, 1979.

[10] Martello, S. and P. Toth, “The 0-1 Knap-
sack Problem,” Combinatorial Optimization,
eds. N. Christofides, A. Mingozzi, C. Sandi,
pp.237-279, John Wiley and Sons, New
York, New York, 1979.

[11] Martello, S. and P. Toth, “A New Algorithm
for the 0-1 Knapsack Problem,” Manage-
ment Science, Vol.35, No.5(1988), pp.633-
644.

[12] Martello, S. and P. Toth, “An Exact Algor-
ithm for Large Unbounded Knapsack Prob-
lems,” Operations Research Letters, Vol.35,
No.9(1990), pp.15-20.

[13] Martello, S., D. Pisinger, and P. Toth, “Dy-
namic Programming and Strong Bounds for
the 0-1 Knapsack Problem,” Management
Science, Vol.45, No.3(1999), pp.414-424.

[14] Martello, S., D. Pisinger, and P. Toth, “New
trends in exact algorithms for the 0-1 Kna-
psack Problem,” European Journal of Oper-
ational Research, Vol.123(2000), pp.325-332.

[15] Moore, B.A., “Correlated 0-1 Knapsack
Problems,” IND ENG 854 Course Project,
Department of Industrial and Systems
Engineering, The Ohio State University,
Columbus, Ohio, 1989.

[16] Moore, B.A., “The Effect of Correlation on
Exact and Heuristic Procedures for the
Weighted Set Covering Problem,” M.S.
Thesis, Department of Industrial and Sys-
tems Engineering, The Ohio State Univer—
sity, Columbus, Ohio, 1990.

[17] Moore, B.A., J.A. Peterson, and C.H. Reilly,
“Characterizing Distributions of Discrete
Bivariate Random Variables for Simulation
and Evaluation of Solution Methods,” Pro—



ceedings of the 1990 Winter Simulation Con-
ference, eds. O. Baci, R.P. Sadowski, R.E.
Nance, pp.294-302, Institute of Electrical
and Electronics Engineers, New Orleans,
Louisiana, 1990.

(18] Moore, B.A. and CH. Reilly, “Randomly
Generating Optimization Test Problems with
Controlled Correlation,” Working Paper 1992~
001, Department of Industrial and Systems
Engineering, The Ohio State University,
Columbus, Ohio, 1992.

[19] Moore, B.A. and C.H. Reilly, “Randomly
Generating Synthetic Optimization Prob-
lems with Explicitly Induced Correlation,”
Working Paper 1993-002, Department of
Industrial and Systems Engineering, The
Ohio State University, Columbus, Ohio, 1993,

[20] Nauss, RM., “An Efficient Algorithm for
the 0-1 Knapsack Problem,” Management
Science, Vol.23, No.1(1976), pp.27-31.

[21] Nemhauser, G.L. and L.A. Wolsey, Integer
and Combinatorial Optimization, Wiley and
Sons, New York, New York, 1988.

[22] Peterson, J.A., “A Parametric Analysis of a
Bottleneck Transportation Problem Applied
to the Characterization of Correlated Dis-
crete Bivariate Random Variables,” M.S.
Thesis, Department of Industrial and Sys-
tems Engineering, The Ohio State Univer-
sity, Columbus, Ohio, 1990.

[23] Peterson, J.A. and C.H. Reilly, “Joint Prob-
ability Mass Functions for Coefficients in
Synthetic Optimization Problems,” Working
Paper 1993-006, Department of Industrial
and Systems Engineering, The Ohio State
University, Columbus, Ohio, 1993.

[24] Pisinger, D., “A minimal algorithm for the
0-1 Knapsack Problem,” Operations Research,

Vol.45, No.5(1997), pp.758-767.

[25] Reilly, C.H., “Optimization Test Problems
with Uniformly Distributed Coefficients,”
Proceedings of the 1991 Winter Simulation
Conference, eds. B.L. Nelson, W.D. Kelton,
GM. Clark, pp.866-874, Institute of Elec-
trical and Electronics Engineers, Phoenix,
Arizona, 1991. ‘

{26] Reilly, CH., “Comparison of Alternative
Input Models for Synthetic Optimization
Problems,” Proceedings of the 1993 Winter
Simulation Conference, eds. G.W. Evans, M.
Mollaghasemi, E.C. Russel, W.E. Biles, pp.
356-364, Institute of Electrical and Elec-
tronics Engineers, Los Angeles, California,
1993

[27] Reilly, CH., “Alternative Input Models for
Generating Synthetic Optimization Prob-
lems : Analysis and Implication,” Working
Paper 1994-001, Department of Industrial
and Systems Engineering, The Ohio State
University, Columbus, Ohio, 1994.

[28] Reilly, C.H., “Optimization Test Problems
With Uniformly Distributed Coefficients,”
Proceedings of the 1999 Winter Simulation
Conference, eds. P.A. Farrington, H.B.
Nembhard, D.T. Strurrock, and G.E. Evans,
pp.116-121, Institute of Electrical and Elec-
tronics Engineers, Phoenix, Arizona, 1999.

[29] Rushmeier, R.A. and GL. Nemhauser, “Ex-
periments with Parallel Branch-and-Bound
Algorithms for the Set Covering Problem,”
Operations Research Letters, Vol13, No.b
(1993), pp.277-285.

[30] Sahni, S., “Approximate Algorithms for the
0/1 Knapsack Problem,” Journal of the
Association for Computing Machinery, Vol.
22, No.1(1975), pp.115-124.



A B dxelE 48 5 7 BA B3 4 1 0-1 Knapsack Ao B Abg 47 71
e e T e

Appendix A.

(Table 8> The average relative errors (standard error) when n=10.

3pmin Prmin Pmin Prmax Prax 3pma.x
Prmin 4 9 4 0 4 2 4 Prax
- 0.0161
(0.0008)

36% 00159 | 00231 | 0028

4 0.0007) | (0.0009) | (0.0009)

Ll 0.0114 0.0128 00188 0.0260 0.0296

2 0.0006) [ (0.0007) | (0.0008) | (0.0010) | (0.00LD)

o 0.0060 0.0106 0.0144 0.025% 0.0233 0.0278 0.0284

4 (0.0004) | (0.0006) | (0.0007) | (0.0009) | (0.0010) | (0.0009) | (0.0010)

0 0.0000 0.0084 0.0104 0.0184 0.0248 0.0253 0.0298 00313 0.029

(0.0000) [ €0.0005) { (0.0005) { (0.0008) | (0.0009) | (0O0I0) | (0.O0LL) | (0.OORD) | (0.0011)

(Table 9> The average relative errors (standard error) for combinations of m, n;, n,, 4, and j, when

n=10,

Cose | andard e m . " i ;
1 00197 (0.0011) 10 100 1000 0 0
2 0.0292 (0.0011) 10 100 1000 100 1000
3 0.0040 (0.0005) 10 100 1000 100 0
4 0.0197 (0.0009) 10 100 1000 0 1000
5 0.0099 (0.0007) 10 10 100 0 0
6 0.0274 (0.0012) 10 10 100 10 100
7 0.0105 (0.002D) 10 10 100 10 0
8 0.0178 (0.0009 10 10 100 0 100
9 00256 (0.0015) 1 1000 1000 0 0
10 0.0374 (0.0013) 1 1000 1000 1000 1000
1 0.0086 (0.0007) 1 1000 1000 1000 0
12 0.0221 (0.0010) 1 1000 1000 0 1000
13 0.0251 (0.0014) 1 100 100 0 0
14 0.0292 (0.0012) 1 100 100 100 100
15 0.0069 (0.0006) 1 100 100 100 0
16 0.0226 (0.0010) 1 100 100 0 100




