Preparation and Properties of Waterborne Polyurethanes Based on Mixtures of Hydroxy-Terminated Polybutadiene and Poly(propylene glycol)

수산기말단 폴리부타디엔/폴리 (프로필렌 글리콜) 혼합물을 이용한 수분산 폴리우레탄의 제조와 물성

  • Lee Seon-Suk (Division of Environmental and Chemical Engineering, Chonbuk National University) ;
  • Lee Si-Ho (Division of Environmental and Chemical Engineering, Chonbuk National University) ;
  • Lee Dai-Soo (Division of Environmental and Chemical Engineering, Chonbuk National University)
  • 이선숙 (전북대학교 공과대학 환경화학공학부) ;
  • 이시호 (전북대학교 공과대학 환경화학공학부) ;
  • 이대수 (전북대학교 공과대학 환경화학공학부)
  • Published : 2006.03.01

Abstract

Anionic or Zwitter-ionic waterbone polyurethanes (WPU) based on mixtures of hydroxy terminated poly-butadiene and poly(propylene glycol) were prepared and their physical properties were characterized. Particle size of WPU increased with increasing the content of HTPB. It was observed that the microphase separation of soft segments and hart segments increased with increasing the content of HTPB in the WPUs. Zwitter-ionic WPU showed stronger hydrogen bonds between molecules than anionic WPU after drying. Polyurethane films obtained after drying of WPUs exhibit besmechanical properties when the HTPB content among polyols for WPUs were 25wt%. It is postulated that such mechanical properties resulted from different microphase separation of soft segments and hard segments of polyurethane films obtainec after drying of WPUs.

수산기말단 폴리부타디엔(hydroxy-terminated polybutadiene: HTPB) 폴리올을 이용한 수분산 폴리우레탄(water-home polyurethane: WPU)의 제조에서 HTPB와 poly(propylene glycol)(PPG)을 혼합 사용한 음이온계 WPU와 쯔비터이온계 WPU를 제조하고 이들의 특성을 조사하였다. WPU 제조 시 HTPB 함량이 증가하면 입자 크기는 커지는 경향을 보이고, 폴리우레탄의 연질부와 경질부의 상분리는 증가하였다. 음이온계 WPU에 비하여 쯔비터이온계 WPU는 건조 필름의 분자간 수소 결합이 강해지는 경향을 나타내었다. 음이온계 및 쯔비터이온계 WPU는 공통적으로 건조 필름이 HTPB 함량이 폴리올 중 25 wt%일때 실험 범위에서는 신율과 인장 강도가 최대값을 보였으며, 이러한 특성은 폴리우레탄의 연질부와 경질부 사이의 미세 상분리를 반영한 것으로 판단되었다.

Keywords

References

  1. C. Hepburn, Polyurethane Elastomer, Elsevier, London, 1982
  2. S. L. Huang and J. Y. Lai, J. Memb. Sci., 105, 137 (1995) https://doi.org/10.1016/0376-7388(94)00319-T
  3. T. Gupta, N. C. Pradhan, and B. Adhikari, J. Memb. Sci., 217, 43 (2003) https://doi.org/10.1016/S0376-7388(03)00069-3
  4. S. B. Haska, E. Bayrarnli, F. Pekel, and S. Ozkar, J. Appl. Polym. Sci., 64, 2347 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970620)64:12<2347::AID-APP9>3.0.CO;2-L
  5. F. M. B. Coutinho, M. C. Delpech, and L. S. Alves, J. Appl. Polym. Sci., 80, 566 (2001) https://doi.org/10.1002/1097-4628(20010425)80:4<566::AID-APP1131>3.0.CO;2-H
  6. F. M. B. Coutinho, M. C. Delpech, T. L. Alves, and A. A. Ferreira, Polym. Degrad. Stabil., 81, 19 (2003) https://doi.org/10.1016/S0141-3910(03)00058-2
  7. G. I. Taylor, Proc. R. Soc., London, Ser. A, 146, 501 (1934)
  8. H. Karam and J. C. Bellinger, Ind. Eng. Chem. Fundam., 7, 576 (1968) https://doi.org/10.1021/i160028a009
  9. S. L. Huang and J. Y. Lai, J. Appl. Polym. Sci., 64, 1235 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1235::AID-APP25>3.0.CO;2-T
  10. H. C. Kuan, C. C. M. Ma, W. P. Chuang, and H. Y. Su, J. Polym. Sci.; Part B: Polym. Phys., 43, 1, (2005) https://doi.org/10.1002/polb.20256
  11. M. M. Coleman, K. Ho Lee, D. J. Skrovanek, and P. C. Painter, Macromolecules, 19, 2149 (1986) https://doi.org/10.1021/ma00162a008
  12. S. S. Yoon and S. C. Kim, J. Appl. Polym. Sci., 95, 1062 (2005) https://doi.org/10.1002/app.21301
  13. J. B. Ahn, H. K. Cho, C. N. Jeong, and S. T. Noh, J. of Korean Ind. Eng. Chem., 8, 230 (1997)
  14. Y. K. Yang, N. S. Kwack, and T. S. Hwang, Polymer(Korea), 29, 81 (2005)