습식 상 역전 방법으로 제조한 아크릴계 고분자 막의 모폴로지

Morphology of Membrane of Acrylic Polymers by Wet Phase Inversion Method

  • 최승은 (기능성고분자 신소재연구센터, 인하대학교 나노시스템공학부) ;
  • 박한수 (기능성고분자 신소재연구센터, 인하대학교 나노시스템공학부) ;
  • 이광희 (기능성고분자 신소재연구센터, 인하대학교 나노시스템공학부)
  • Choi Seung-Eun (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University) ;
  • Park Han-Soo (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University) ;
  • Lee Kwang-Hee (Center for Advanced Functional Polymers, Department of Polymer Science and Engineering, Inha University)
  • 발행 : 2006.03.01

초록

본 연구에서는 아크릴계 고분자의 소수성 차이에 따른 막 모폴로지 변화를 조사하였다. 막은poly(methyl methacrylate)(PMMA), poly(ethyl methacrylate)(PEMA), poly(butyl methacrylate)(PBMA), poly(isobutyl, methacrylate)(PIBMA) 및 이들의 블렌드를 사용하여 습식 상 역전 방법으로 제조하였다. 상대적으로 소수성이 적은 PMMA와 PEMA는channel-like 형태의 막 구조를, 소수성이 큰 PBMA와 PIBMA는 finger-like 형태의 막 구조를 보여주었다. 이러한 막 구조의 변화는 polymer-rich상의 고상화 과정에서 속도론적 차이가 있었기 때문이었다. 이성분 블렌드 막의 구조는 주 성분 고분자에 의해 결정되었다.

In this work, the effect of the hydrophobicity of acrylic polymers on the membrane morphology was investigated. The membranes were prepared with poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), poly (butyl methacrylate) (PBMA), poly(isobutyl methacrylate), and their blends using the wet phase inversion method. PMMA and PEMA having a relatively less hydrophobicity formed the channel-like structure, whereas PBMA and PIBMA having more hydrophobic units formed the finger-like structure. These morphological changes were attributed to differences in the solidification process of the polymer-rich phase determine d by the polymer/solvent/nonsolvent ternary phase diagram. The membrane structures of the blends were controlled by the main component of their blends.

키워드

참고문헌

  1. J. H. Kim, J. Y. Yoo, and C. K. Kim, Macromol. Res., 10, 209 (2002) https://doi.org/10.1007/BF03218307
  2. B. Y. Lim and S. C. Kim, Macromol. Res., 11, 163 (2003) https://doi.org/10.1007/BF03218347
  3. S. H. Hong, J. J. Kim, and Y. M. Lee, Macromol. Res., 11, 451 (2003) https://doi.org/10.1007/BF03218975
  4. H. J. Jin, M. O. Hwang, J. S. Yoon, K. H. Lee, I. J. Chin, and M. N. Kim, Macromol. Res., 13, 73 (2005) https://doi.org/10.1007/BF03219018
  5. H. Strathmann, Production of microporous media by phase inversion processes, ACS Symp. Ser., 269, 165 (1985)
  6. H. Strathmann and K. Koch, Desalination, 21, 241 (1977) https://doi.org/10.1016/S0011-9164(00)88244-2
  7. J. G. Wijmans and C. A. Smolders, 'Preparation of symmetric membranes by the phase inversion process', in Synthetic Membranes. Science, Engineering and Applications, H. K. Londsdale and M. H. Pinho, Editors, Reidel, Dordrecht, p. 36 (1986)
  8. J. B. Ryu, K. G.. Song, and S. S. Kim, Polymer (Korea), 24, 342 (2000)
  9. B. T. Kim, K. G. Song, and S. S. Kim, Polymer(Korea), 10, 127 (2002) https://doi.org/10.1016/0032-3861(69)90016-0
  10. L. Zeman and T. Fraser, J. Membrane Sci., 4, 93 (1993)
  11. L. Zeman and T. Fraser, J. Membrane Sci., 87, 267 (1994) https://doi.org/10.1016/0376-7388(94)87033-0
  12. P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, J. Membrane. Sci., 117, 1 (1996) https://doi.org/10.1016/0376-7388(96)00088-9
  13. Marcel Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Publishers, Dordrecht, 1991
  14. Y. I. Huh, Polymer(Korea), 24, 802 (2000)
  15. M. J. Han, S. T. Nam, and J. H. Lee, Polymer(Korea), 25, 151 (2001)
  16. H. Tompa, Polymer Solutions, Butterworths, London, 1956
  17. J. Y. Kim, A study on the mechanism of membrane formation from poIysulfone/NMP/water system by means of phase inversion, Ph. D. Thesis, KAlST (1998)
  18. R. C. Ruaan, T. Chang, and D. M. Wang, J. Polym. Sci.; Part B: Polym. Phys., 37, 1495 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990701)37:13<1495::AID-POLB15>3.0.CO;2-O
  19. C. A. Smolders, A. J. Reuvers, R. M. Boom, and I. M. Wienk, J. Membrane Sci., 73, 259 (1992) https://doi.org/10.1016/0376-7388(92)80134-6
  20. Y. D. Kim, J. Y. Kim, H. K. Lee, and S. C. Kim, J. Appl. Polym. Sci., 73, 2377 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990919)73:12<2377::AID-APP7>3.0.CO;2-F
  21. S. A. McKelvey and W. J. Koros, J. Membrane Sci., 112, 29 (1996) https://doi.org/10.1016/0376-7388(95)00197-2
  22. C. Stropnik, L. Germic, and B. Zerial, J. Appl. PoIym. Sci., 61, 1821 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960906)61:10<1821::AID-APP24>3.0.CO;2-3
  23. J. Y. Lai, F. C. Lin, T. T. Wu, and D. M. Wang, J. Membrane. Sci., 155, 31 (1999) https://doi.org/10.1016/S0376-7388(98)00292-0
  24. Y. D. Kim, J. Y. Kim, H. K. Lee, and S. C. Kim, J. Appl. Polym. Sci., 74, 2124 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991128)74:9<2124::AID-APP2>3.0.CO;2-Y
  25. J. Barzin, S. S. Madaeni, H. Mirzadeh, and M. Mehrabzadeh, J. Appl. Polym. Sci., 92, 3804 (2004) https://doi.org/10.1002/app.20395
  26. J. Y. Lai, S. F. Lin, F. C. Lin, and D. M. Wang, J. Polym. Sci.; Part B: Polym. Pbys., 36, 607 (1998) https://doi.org/10.1002/(SICI)1099-0488(199803)36:4<607::AID-POLB7>3.0.CO;2-L
  27. H. A. Tsai, R. C. Ruaan, D. M. Wang, and J. Y. Lai, J. Appl. Polym. Sci., 86, 166 (2002) https://doi.org/10.1002/app.10932