DNA Microarray Analysis of Gene Expression Profiles in Aging process of Mouse Brain

  • Lee Mi-Suk (Department of Biochemistry, Hallym University College of Medicine) ;
  • Heo Jee-In (Department of Biochemistry, Hallym University College of Medicine) ;
  • Kim Jae-Bong (Department of Biochemistry, Hallym University College of Medicine) ;
  • Park Jae-Bong (Department of Biochemistry, Hallym University College of Medicine) ;
  • Lee Jae-Yang (Department of Biochemistry, Hallym University College of Medicine) ;
  • Han Jeong-A. (Department of Biochemistry and Molecular Biology, Kangwon National University College of Medicine) ;
  • Kim Jong-Il (Department of Biochemistry, Hallym University College of Medicine)
  • 발행 : 2006.03.01

초록

In order to investigate the molecular basis of the aging process in brain, we have employed high-density oligonucleotide microarrays providing data on 10,108 gene clusters to define transcriptional patterns in three brain regions, cerebral cortex, cerebellum, and hippocampus. Comparison of the expression patterns between young (6-week-old) and aged (17-month-old) C57BL/6 male micerevealed that about ten percent (1098) of the genes showed a significant change in the expression level in at least one of the three tissues. Among them, 23 genes were upregulated and 62 genes were downregulated in all three tissues of the old mice. The number of genes upregulated exclusively in hippocampus (337) was much larger compared to other tissues. Gene ontology-based analysis showed the genes related with signal transduction or molecular transports are more likely to be upregulated than downregulated in the aging process of hippocampus. These data may provide some useful means for elucidating the molecular aspect of aging in hippocampus and other regions in brain.

키워드

참고문헌

  1. Blalock, E., Chen, K., Sharrow, K., Herman, J., Porter, N., Foster, T., and Landfield, P. (2003). Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J. Neurosci. 23, 3807-3819 https://doi.org/10.1523/JNEUROSCI.23-09-03807.2003
  2. Erraji-Benchekroun, L., Underwood, M., Arango, V., Galfalvy, H., Pavlidis, P., Smyrniotopoulos, P., Mann, J.,and Sibille, E. (2005). Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol. Psychiatry 57, 549-558 https://doi.org/10.1016/j.biopsych.2004.10.034
  3. Flo, T., Smith, K., Sato, S., Rodriguez, D., Holmes, M., Strong, R., Akira, S., and Aderem, A. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917-21 https://doi.org/10.1038/nature03104
  4. Hanai, J., Mammoto, T., Seth, P., Mori, K., Karumanchi, S., Barasch, J., and Sukhatme, V. (2005). Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells. J. Biol. Chem 280, 13641-13647 https://doi.org/10.1074/jbc.M413047200
  5. Jucker, M., Tian, M., and Ingram, D. (1996). Laminins in the adult and aged brain. Mol. Chem. Neuropathol 28, 209-218 https://doi.org/10.1007/BF02815224
  6. Junghans, D., Haas, I., and Kemler, R. (2005). Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr. Opin. Cell Biol. 17, 446-452 https://doi.org/10.1016/j.ceb.2005.08.008
  7. Lander, E. (1999). Array of hope. Nat. Genet. 21, 3-4 https://doi.org/10.1038/4427
  8. Lu, T., Pan, Y., Kao, S., Li, C., Kohane, I., Chan, J., and Yankner, B. (2004). Gene regulation and DNA damage in the ageing human brain. Nature 429, 883-891 https://doi.org/10.1038/nature02661
  9. Ludwig, L., Kessler, H., Hoang-Vu, C., Dralle, H., Adler, G., Boehm, B., and Schmid, R. (Aug-14-2003). Grap-2, a novel RET binding protein, is involved in RET mitogenic signaling. Oncogene 22, 5362-5366 https://doi.org/10.1038/sj.onc.1206517
  10. MacManus, J., Graber, T., Luebbert, C., Preston, E., Rasquinha, I., Smith, B.,and Webster, J. (2004). Translation-state analysis of gene expression in mouse brain after focal ischemia. J. Cereb. Blood Flow Metab. 24, 657-667 https://doi.org/10.1097/01.WCB.0000123141.67811.91
  11. Meindl, A., Carvalho, M., Herrmann, K., Lorenz, B., Achatz, H., Lorenz, B., Apfelstedt-Sylla, E., Wittwer, B., Ross, M., and Meitinger, T. (1995). A gene (SRPX) encoding a sushi-repeat-containing protein is deleted in patients with X-linked retinitis pigmentosa. Hum. Mol. Genet. 4, 2339-2346 https://doi.org/10.1093/hmg/4.12.2339
  12. Morita, T., Mizutani, Y., Sawada, M., and Shimada, A. (2005). Immunohistochemical and ultrastructural findings related to the blood--brain barrier in the blood vessels of the cerebral white matter in aged dogs. J. Comp Pathol. 133, 14-22 https://doi.org/10.1016/j.jcpa.2005.01.001
  13. Nathanson, C.M., Wasselius J., Wallin, H., and Abrahamson, M. (2002). Regulated expression and intracellular localization of cystatin F in human U937 cells. Eur. J. Biochem. 269, 5502-5511 https://doi.org/10.1046/j.1432-1033.2002.03252.x
  14. Palu, E. and Liesi, P. (2002). Differential distribution of laminins in Alzheimer disease and normal human brain tissue. J. Neurosci. Res. 69, 243-256 https://doi.org/10.1002/jnr.10292
  15. Prolla, T. (2002). DNA microarray analysis of the aging brain. Chem. Senses. 27, 299-306 https://doi.org/10.1093/chemse/27.3.299
  16. Sousa, J., Grandela, C., Fernandez-Ruiz, J., de Miguel, R., de Sousa, L., Magalhnes, A., Saraiva, M., Sousa, N., and Palha, J. (2004). Transthyretin is involved in depression-like behaviour and exploratory activity. J. Neurochem. 88, 1052-1058 https://doi.org/10.1046/j.1471-4159.2003.02309.x
  17. Wang, X., Su, H., and Bradley, A. (2002). Molecular mechanismsgoverning Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes. Dev. 16, 1890-1905 https://doi.org/10.1101/gad.1004802
  18. Weiner, J., Wang, X., Tapia, J., and Sanes, J. (2005). Gamma protocadherins are required for synaptic development in the spinal cord. Proc. Natl. Acad. Sci. USA 102, 8-14
  19. Yamashita, A., Hakura, A., and Inoue, H. (1999). Suppression of anchorage-independent growth of human cancer cell lines by the drs gene. Oncogene 18, 4777-4787 https://doi.org/10.1038/sj.onc.1202852
  20. Yankner, B. (2000). A century of cognitive decline. Nature 404, 125 https://doi.org/10.1038/35004673