호안에서의 월파에 대한 신뢰성 해석

Reliability Analysis of Wave Overtopping over a Seawall

  • 오정은 (서울대학교 지구환경시스템공학부) ;
  • 서경덕 (서울대학교 지구환경시스템공학부) ;
  • 권혁민 (경주대학교 토목공학과)
  • Oh Jung-Eun (School of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Suh Kyung-Duck (School of Civil, Urban and Geosystem Engineering, Seoul National University) ;
  • Kweon Hyuck-Min (Department of Civil Engineering, Kyongju University)
  • 발행 : 2006.03.01

초록

본 연구에서는 경사식 호안에서 발생하는 월파 현상에 대한 Level 3 신뢰성 해석을 수행하여, 처오름 높이와 평균월파량을 바탕으로 월파 현상을 분석하였다. Level 3 방법의 Monte-Carlo 추출법으로 모의하면서, 월파에 영향을 미치는 여러 변수들의 불확실성을 고려하였다. 파별분석법으로 개별파의 처오름 높이를 계산하여 월파확률을 산정하고, 평균월파량은 유의파고로부터 직접 계산하였다. 또한 개별파의 월파부피에 대한 통계적 가정을 바탕으로 월파확률과 평균월파량으로부터 최대월파부피를 산정하였다. 한편 파향의 변동성과 수심, 구조물의 경사각을 변화시키면서 월파 현상에 미치는 영향을 분석하였다. 파향의 변동성을 고려하거나 쇄파대 안쪽으로 들어올수록 굴절의 영향으로 평균월파량과 월파획률 그리고 최대월파부피가 줄어들었으며 호안의 마루높이도 낮게 결정되었다. 그리고 수심이나 방향분산계수가 다른 두 지점의 기대평균월파량이 같게 나타날지라도, 같은 수심에 비해 수심이 얕은 쇄파대 내에서는 기대월파확률은 크고 기대최대월파부피는 작게 나타난다.

A Level 3 reliability analysis has been performed for wave run-up and overtopping on a sloping seawall. A Monte-Carlo simulation was performed considering the uncertainties of various variables affecting the wave overtopping event. The wave overtopping probability was evaluated from the individual wave run-up by using the wave-by-wave method, while the mean overtopping rate was calculated directly from the significant wave height. Using the calculated overtopping probability and mean overtopping rate, the maximum overtopping volume was also calculated on the assumption of two-parameter Weibull distribution of individual wave overtopping volume. In addition, by changing wave directions, depths, and structure slopes, their effects on wave overtopping were analyzed. It was found that, when the variability of wave directions is considered or the water depth decreases toward shore, wave height become smaller due to wave refraction, which yields smaller mean overtopping rate, overtopping probability and maximum overtopping volume. For the same mean overtopping rate, the expected overtopping probability increases and the expected maximum overtopping volume decreases as approaching toward shore inside surfzone.

키워드

참고문헌

  1. 권혁민 (1998). 방향 스펙트럼 파랑에 대한 3차원 쇄파변형 모델. 대한토목학회논문집, 18(II-6), 591-599
  2. 권혁민, 이영렬, 조홍연 (2005). 실해역에 조위발생빈도분포를 고려한 기대월파확률. 대한토목학회논문집, 25(1B), 1-8
  3. 서경덕, 권혁민, 윤현덕 (2003). 파향의 변동성을 고려한 방파제 피복 블록의 기대피해 계산. 한국해안.해양공학회지, 15(1), 21-32
  4. 오정은 (2005). 월파에 대한 호안의 신뢰성 해석. 석사학위 논문, 지구환경시스템학부, 서울대학교, 96
  5. 이철웅 (2003a). 경사식 해안 구조물에 대한 처오름의 신뢰성 해석. 대한토목학회논문집, 23(6B), 567-574
  6. 이철웅 (2003b). 월파에 대한 경사식 해안 구조물의 신뢰성 해석. 한국해안.해양공학회지, 15(4), 214-223
  7. 조홍연, 정신택, 오영민 (2004). 조위자료의 확률밀도함수 추정. 한국해안.해양공학회지, 16(3), 152-161
  8. 홍수영, 서경덕, 권혁민 (2004), 파향의 변동성을 고려한 직립방파제 콘크리트 케이슨의 기대활동량 산정. 한국해안.해양공학회지, 16(1), 27-38
  9. Aminti, P. and Franco, L. (1988). Wave overtopping on rubble mound breakwaters. Proceedings of the 21st International Coastal Engineering Conference, ASCE, 1, 770-781
  10. Banyard, L. and Herbert, D.M. (1995). The effect of wave angle on the overtopping of seawalls. Rep. Ser. 396, Hydraulic Research, Wallingford, U.K
  11. Besley, P. (1999). Overtopping of seawalls - design and assessment manual. R&D Technical Report W178, Environment Agency, Bristol, 37
  12. Bradbury, A.P., Allsop, N.W.H. and Stephens, R.V. (1988). Hydraulic performance of breakwater crown wall. Rep. Ser. 146, Hydraulic Research, Wallingford, U.K., 385-396
  13. Franco, L. and Cavani, A. (2000). Overtopping response of Core-Locs, Tetrapods and Antifer cubes. Coastal Structures'99, Losada(ed.), 383-387
  14. Goda, Y. (1975). Irregular wave deformation in the surf zone. Coastal Engineering in Japan, 18, 13-26 https://doi.org/10.1080/05785634.1975.11924196
  15. Goda, Y. (2000). Random Seas and Design of Maritime Structures. 2nd ed. World Scientific, Singapore, 443
  16. Hedges, T.S. and Reis, M.T. (1998). Random wave overtopping of simple seawalls: a new regression model. Proceedings of the Institution of Civil Engineering, Water, Maritime and Energy Journal, 130, 1-10
  17. Hunt, I.A. (1959). Design of seawalls and breakwaters. Journal of the Waterway and Harbours Division, Proc ASCE, WW3, ASCE, New York, 85(3), 123-152
  18. Jackson, R.A. (1968). Design of cover layers for rubble-mound breakwaters subjected to non-breaking waves. WES Research Report No.2-11, U.S. Army Waterways Experiment Station, Bickburg, MS, 20-30
  19. Kweon, H.M. and Suh, K.D. (2003). Reliability analysis of the expected overtopping probability of rubble mound break-water. Proceedings of 13th International Offshore and Polar Engineering Conference, ISOPE, Honolulu, Hawaii, USA, 493-496
  20. Longuet-Higgins, M.S. (1975). On the joint distribution of the periods and amplitudes of sea waves. Journal of Geophys. Res., 90(18), 2688-2694
  21. Ohle, N., Daemrich, K. and Tautenhain, E. (2005). Influence of spectral shape on wave parameters and design methods in time domain. The 5th International Symposium on Ocean Wave Measurement and Anaylsis, Madrid, CD-ROM, Paper No. 150, 10
  22. Reis, M.T. (1998). Probabilistic assessment of the safety of coastal structures. PhD thesis, Department of the Civil Engineering, University of Liverpool, Liverpool
  23. Ronold, K.O. (1990). Reliability analysis of a coastal dike. Coastal Engineering, 14(1), 43-56 https://doi.org/10.1016/0378-3839(90)90009-L
  24. Shimosako, K. and Takahashi, S. (2000). Application of deformation-based reliability design for coastal structutres. Proceedings of International Conference on Coastal Structures '99, A.A. Balkema, Spain, 363-371
  25. Simm, J.D. (1991). Manual on the use of rock in coastal and shoreline engineering. CIRIA/CUR, Special Publication 83, CIRIA, London
  26. Takayama, T. and Ikeda, N. (1994). Estimation of encounter probability of sliding for probabilistic design of breakwater. Proceedings of Wave Barriers in Deepwaters, Port and Harbour Research Institute, Yokosuka, 438-457
  27. Tautenhain, E., Kohlhase, S. and Partenscky, H.W. (1982). Wave run-up at sea dikes under oblique wave approach. Proceedings of the 18th International Conference on Coastal Engineering, Cape Town, 804-810
  28. TAW (2002). Technical report wave run-up and wave overtopping at dikes. Technical Advisory Committee on Flood Defence, Delft, 42
  29. van der Meer, J.W. and Janssen, W. (1995). Wave run-up and wave overtopping at dikes, in wave forces on inclined and vertical wall structures. Kobayashi and Demirbilek, eds., ASCE, 1-27
  30. van der Meer, J.W. and de Waal J.P. (1993). Water movement on slopes. Influence of berm, roughness, shallow foreshore and oblique long- and short-crested wave attack. Report on model investigation, H 1256, WL | Delft Hydraulics (in Dutch)