참고문헌
- D. E. Goldberg, Genetic Algorithms in search, Optimization & Machine Learning, Addison-wesley, 1989
- K. A. De Jong, 'Are genetic algorithms function optimizers?', In R. Manner and B. Manderick, editors, Parallel Problem Solving from Nature 2, North-Holland, Amsterdam, 1992
- Z. Michalewicz, Genetic Algorithms+Data Structure=Evolution Programs, Springer-Verlag, 1992
- J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA: MIT Press, 1992
- H. G. Beyer, The Theory of Evolution Strategies, Berlin, Germany: Springer-Verlag, 2001
- H. G. Beyer and H. P. Schwefel, Evolution strategies: A comprehensive introduction, Nat. Comput., vol. 1, no. 1, pp. 3-52, 2002 https://doi.org/10.1023/A:1015059928466
- D. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, Piscataway, NJ: IEEE Press, 1996
- J. Kennedy and R. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. Neural Networks, vol. IV, pp. 1942-1948, 1995 https://doi.org/10.1109/ICNN.1995.488968
- M. A. Abido, Optimal Design of Power-System Stabilizers Using Particle Swarm Optimization, IEEE Trans. Energy Conversion, vol. 17, no. 3, pp. 406-413, 2002 https://doi.org/10.1109/TEC.2002.801992
- Z. L. Gaing, A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System, IEEE Trans. Energy Conversion, vol. 19, no. 2, pp. 384-391, 2004 https://doi.org/10.1109/TEC.2003.821821
- K. E. Parsopoulos and M. N. Vrahatis, On the Computation of All Global Minimizers Through Particle Swarm Optimization, IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp. 211-224, 2004 https://doi.org/10.1109/TEVC.2004.826076
- J. Robinson and Y. Rahmat-Samii, Particle Swarm Optimization in Electromagnetics, IEEE Trans. Antennas and Propagation, vol. 52, no. 2, pp. 397-407, 2004 https://doi.org/10.1109/TAP.2004.823969
- A. Salman, I. Ahmad, and S. Al-Madani, Particle swarm optimization for task assignment problem, Microprocessors and Microsystems, vol. 26, no., pp. 363-371, 2002 https://doi.org/10.1016/S0141-9331(02)00053-4
- J. Kennedy, The particle swarm: Social adaptation of knowledge, Proc. IEEE Int. Conf. Evolutionary Comput. , pp. 303-308, 1997 https://doi.org/10.1109/ICEC.1997.592326
- S. Mostaghim and J. Teich, Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO), Proc. IEEE 2003 Swarm Intelligence Symp., pp. 26-3, 2003 https://doi.org/10.1109/SIS.2003.1202243
- E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, Particle swarm optimization for minimax problems, Proc. IEEE 2002 Congr. Evolutionary Computation, pp. 1582-1587, 2002 https://doi.org/10.1109/CEC.2002.1004478
- E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis, Particle swarm optimization for integer programming, Proc. IEEE 2002 Congr. Evolutionary Computation, pp. 1576-1581, 2002 https://doi.org/10.1109/CEC.2002.1004477
- R Eberhart and Y. Shi, Comparison between genetic algorithms and particle swarm optimization, LNCS-Evolutionary Programming VII, vol. 1447, pp. 611-616, 1998 https://doi.org/10.1007/BFb0040812
- B. Liu, L. Wang, Y. H. lin, F. Tang and D. X. Huang, Improved particle swarm optimization combined with chaos, Chaos, Solitons & Fractals, vol. 25, no. 5, pp. 1261-1271, 2005 https://doi.org/10.1016/j.chaos.2004.11.095
- X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, and L. M. Wang, An improved GA and a novel PSQ-GA-based hybrid algorithm, Information Processing Letters, vol. 93, pp. 255-261, 2005 https://doi.org/10.1016/j.ipl.2004.11.003
- B. Brandstatter and U. Baumgartner, Particle Swarm Optimization-Mass-Spring System Analogon, IEEE Trans. Magnetics, vol. 38, no. 2, pp. 997-1000, 2002 https://doi.org/10.1109/20.996256
- S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders, and R. C. Paton, A particle swarm optimizer with passive congregation, Bio-Systems, vol. 78, pp. 135-147, 2004 https://doi.org/10.1016/j.biosystems.2004.08.003
피인용 문헌
- Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation vol.60, pp.4, 2011, https://doi.org/10.5370/KIEE.2011.60.4.862
- A new approach to radial basis function-based polynomial neural networks: analysis and design vol.36, pp.1, 2013, https://doi.org/10.1007/s10115-012-0551-4