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Use of Support Vector Machines in Biped Humanoid Robot
for Stable Walking

4 s H, 8 e
(Dongwon Kim and Gwi-Tae Park)

Abstract : Support vector machines in biped humanoid robot are presented in this paper. The trajectory of the ZMP in biped walking
robot poses an important criterion for the balance of the walking robots but complex dynamics involved make robot control difficult.
We are establishing empirical relationships based on the dynamic stability of motion using SVMs. SVMs and kernel method have
become very popular method for learning from examples. We applied SVM to model the practical humanoid robot. Three kinds of
kernels are employed also and each result has been compared. As a result, SVM based on kernel method have been found to work
well. Especially SVM with RBF kernel function provides the best results. The simulation results show that the generated ZMP from
the SVM can be improve the stability of the biped walking robot and it can be effectively used to model and control practical biped

walking robot.
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L. Introduction

Building machines with humanlike form is not only an
interesting scientific challenge, but also a practical
engineering endeavor. With a physical form similar to humans,
the humanoid robots are potential tools to be used as proxies
or assistants of humans in performing tasks in the real world
environments which are including rough terrain, steep stairs,
and obstacles. Humanoid robots have recently evolved into an
active research area with the creation of several humanoid
robot systems and many related issues such as stability
criterion, actual robot design and application, and dynamics
analysis have been studied [1-4]. In addition, the humanoid
robots involve many technical issues to be solved. Among
these issues a stable and reliable biped walking is the most
fundamental and yet unsolved with a high degree of reliability.

It is generate dynamically consistent walking patterns [5].
So the quest for a fully autonomous humanoid robot is a main
scientific goal of the artificial intelligence community [6-8].

The current research is directed toward the generation of
anthropomorphic trajectories, and toward efficient ways for
the biped robot to control them. The robot is fitted with feet
equipped with sensors measuring the ground-foot forces, in
order to exploit the concepts of zero moment point (ZMP) [9].

The ZMP was originally defined for ground contacts of legs
by Vukobratovic [10-11] as the point in the ground plane
about which the total moments due to ground contacts become
zero in the plane. As long as gravity forces govern walking
gaits, the ZMP will be a significant dynamic equilibrium
criterion. As a result the ZMP trajectories are used as a
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reference of humanoid robot for stable walking. Recently a
few attempts have been made to develop human-like walking
as modeling desired ZMP trajectory. Kim et al. [12-13]
proposed a method to generate smooth walking pattern using
fuzzy and adaptive neuro-fuzzy systems and their results are
original and unconventional. This is mainly due to relatively
high predictive ability of fuzzy systems as demonstrated by a
comparison with statistical regression counterparts [13].
However, there still exist other intelligent systems like support
vector machines not yet evaluated. Investigating their
applicability to humanoid robot is highly demanded since it
may exhibit better predictive ability than typical fuzzy systems,
thereby providing more improved insight into human-like
walking mechanisms.

In this study, support vector machines (SVM) are first
applied to model a ZMP trajectory of practical humanoid robot
and their performance can be considerably varied depending
on the type of kernels adopted by the networks. As a function
of three kinds of kernel, the SVM performance is optimized.
The SVM model is compared to the fuzzy system and classical
statistical regression models.

I1. Biped humanoid robot for experiments

In practice, we have designed and implemented a biped
humanoid robot as shown in Fig. 1. The robot has 19 joints
and the locations of the joints during motion are also shown in
Fig. 1. The height and the total weight are about 308mm and
1700g including batteries. Each joint is driven by the RC
servomotor that consists of a DC motor, gear, and simple
controller. Each of the RC servomotors is mounted in the link
structure. Our biped walking robot is able to walk under the
condition which one step is 48 mm per 1.4 s on the flat floor.

As a significant stability criterion, ZMP trajectory is used
and real ZMP is calculated based on the data of the force
sensors equipped on each foot. In addition, it is experimented
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Fig. 2. Biped humanoid robot walking on the flat ground.
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Fig. 3. Real ZMP positions and corresponding trajectory of biped
humanoid robot (flat ground).

and obtained from various grounds such as flat ground and
slope. More detailed information about specification and block
diagram of the robotic system are in {12-13].
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Fig. 4. Biped humanoid robot walking on the slope.
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Fig. 5. Real ZMP positions and corresponding trajectory of biped
humanoid robot (slope).

The walking motions of the robot walking on the flat
ground are shown in Fig. 2. When the humanoid robot walks
on the flat ground, the real ZMP positions, x-coordinate and y-
coordinate, and their corresponding ZMP trajectories are also
shown in Fig. 3, respectively. Fig. 4 depicts the walking
motion of the humanoid robot when it is walking up a
10° slope. In addition, Fig. 5 shows the real ZMP positions
and their corresponding trajectory.

The complex dynamics involved in the biped walking robot
make robot control a challenging task. So if the highly
nonlinear and complex dynamics are modeled well, it is
possible to explain empirical laws by incorporating them into
the biped walking robot. We used support vector machines to
be studied in next section to present the nonlinearities using
the actual ZMP trajectories.

II1. Support vector machines for stable walking patterns
The SVMs can be applied to regression problems by the
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introduction of an alternative loss function [15-16]. The basis
idea in support vector regression (SVR) is to map the input
data x into a higher dimensional feature space via a nonlinear
mapping @ and then a linear regression problem is obtained
and solved in this feature space. The following presents some
basic concepts of SVR as described by prior research. A
detailed explanation may be found in [14-16]. In SVM method,
the regression function is approximated by the foliowing
function:

=3 wd,(x)+h 0

where {(I),.(x)}f.=I are the feature of inputs, {w,}_ and b are

coefficients. The coefficients are estimated by minimizing the
regularized risk function.

1 1 2
R(C)=C72f=ll‘£(dl’yl)+5||w“ (2)
Where
0 Jor |d—y| <&
L(d,y)= ’
Ad,y,) {|d—y|—€ otherwise ®

and ¢ is a prescribed parameter.

In Eq. 2), L.(d,y;) is &-insensitive loss function, which
. . ) . 1 2.
indicates that it does not penalize errors below ¢. E”w” is

used as a flatness measurement of Eq. (1) and C is a
regularized constant determining the tradeoff between the
training error and the model flatness. Introduction of slack

variables {,g“* leads Eq. (2) to the following constrained

function

Minimize R(w,{")= %”wlr + C*ijl(@ +¢7) “)

st. wD(x)+b-d e+,

" . (5)
d-wb(x)-b<se+d,, ¢,¢ 20.

Thus, function (1) becomes the explicit form

[, =Y wd@)+b=Y, (a-a))dx) O(x)+b ”
= > (@ —a)K (%) +b
In formula (6), Lagrange multipliers ¢, and a; satisfy the

. .
constraints «, *a, =0, @, 20, « >0and they can be

obtained by maximizing the dual form of function (5)

(0= dle,-a)-£Y, (@+a))
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with constraints

(7N

3 @ -a)=0, 0<a,<C, 0<a <C (8)

Based on the nature of quadratic programming, only a

number of coefficients among @, and «; will be nonzero, and
the data points associated with them refer to support vectors.
The form @(x,) ®(x) in Eq. (6) is replaced by kernel

function with the form

K(x,y) = @(x)" () ®

There are some different kernels for generating the inner
products to construct machines with different types of
nonlinear decision surfaces in the input space. We employed
three kinds of kernel functions as follows

linear : K(x,p)=x"y
polynomial: K(x,y)=(xy +1)* (10)
RBF 1 K(x,y) =exp(— %_2 ||x - y”z)

Using the three types of kernel functions such as linear,
polynomial, and radial basis function for SVR, approximated
models are constructed and their results are compared. The
accuracy was quantified in terms of mean squared error (MSE)
values. The SVR was applied to model the ZMP trajectory of
the humanoid robot depicted in previous section using actual
ZMP data. In Table 1, MSE values corresponding three types
of kernel functions are listed when the humanoid robot is
walking on the flat ground. And we can compare the results
with respect to various kernel functions.

One of the advantages of linear kernel is that there is no
parameter to tune except the constant C. For the nonlinear case
there is an additional parameter, the kernel parameter, to tune.
As constant C, we set the value as 1000. Moreover, the degree
of polynomial and width of RBF are set to 2.

From the Table 1, the polynomial kernel provides worse
results than the RBF kernel. In addition, it takes a longer time
in the procedure. The generated ZMP positions from the RBF
kernel, and its errors between actual data and generated data
are shown in Fig 6. In the figure, we can also see the
corresponding ZMP trajectories that are generated from the
RBF kernel and error distribution which is information for
state and range of each position error. From the figure, the
generated ZMP is very similar to actual ZMP trajectory of the
biped humanoid robot.

A series of comprehensive experiments was conducted
again and the results are summarized in the same way as
before. Other results from SVR about humanoid robot walking
on the slope are shown in Table 2. As seen in the results, the
SVR with RBF kernel has the best results among other kernel
functions. Similarly as in the two cases of the walking condition,
flat ground and slope, the RBF kernel function has considerably
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Table 1. Kernel functions and corresponding accuracy of humanoid

robot (0°).
kernel type x-coordinate y-coordinate
linear 47.184 60.704
polynomial 9.695 18.568
RBF 2.524 2.721
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Fig. 6. Generated ZMP positions and corresponding trajectory of
biped humanoid robot (0 ° ).
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Table 2. Kemel functions and corresponding accuracy of humanoid

robot(10%).
kernel type x-coordinate y-coordinate
linear 48.28 58.648
polynomial 15.313 18.287
RBF 6.938 3.732
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Fig. 7. Generated ZMP positions and corresponding trajectory of
biped humanoid robot (10°).

best results. As a result, the SVR with RBF structures defined
for the two cases are most likely to yield the best model for the
stable walking of humanoid robot.

Fig. 7 shows the generated ZMP positions and their trajectory
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Table 3. Comparison results with other methods.

Methods grOl.H?d X y
condition
Regression model [13] 7.780 13.558
4.164 .
Fuzzy system [12,13] flat 6 4.763
4.249 4.59
SVR 2.524 2.721
Regression model [13] 13.661 15.560
8.552 5.011
F tem [12,13 slope
uzzy system [12.13] P 8862 | 6443
SVR 6.938 3.732

from SVR with RBF kernel. In the figure, each position and its
errors are illustrated. Moreover, the ZMP trajectory
corresponding generated positions and its error distributions
are also shown, respectively.

To show the excellent performance demonstrated by the
SVR, we compare the performance with other methods. Table
3 provides comparisons with other techniques being already
proposed in the literature. The comparison is realized on the
basis of the same performance index for the actual ZMP
trajectory. It is obvious that the SVR model outperforms other
models so the SVR can be effectively used to model and
control complex human-like walking mechanism.

VL. Conclusions

This paper deals with support vector regression modeling of
zero moment point (ZMP) trajectory of a practical biped
walking robot. The trajectory of the ZMP poses an important
criterion for the balance of the walking robots but complex
dynamics involved make robot control difficult.

To establish empirical relationships between process
parameters and to explain empirical laws by incorporating
them into the biped walking robot, SVM is applied to model
the ZMP trajectory data. Real ZMP data throughout the whole
walking phase are obtained from the real biped 'walking robot
on the flat floor and some slopes. Three kinds of kernels are
employed and each result has been compared. As a result,
SVM based on kernel method have been found to work well.
Especially SVM with RBF kernel function provides the best
results. The simulation results show that the generated ZMP
from the SVM can be improve the stability of the biped
walking robot and SVM can be effectively used to model and
control practical biped walking robot.
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