Segmentation of Airborne LIDAR Data: From Points to Patches

항공 라이다 데이터의 분할: 점에서 패치로

  • 이임평 (서울시립대학교 도시과학대학 지적정보학과)
  • Published : 2006.03.01

Abstract

Recently, many studies have been performed to apply airborne LIDAR data to extracting urban models. In order to model efficiently the man-made objects which are the main components of these urban models, it is important to extract automatically planar patches from the set of the measured three-dimensional points. Although some research has been carried out for their automatic extraction, no method published yet is sufficiently satisfied in terms of the accuracy and completeness of the segmentation results and their computational efficiency. This study thus aimed to developing an efficient approach to automatic segmentation of planar patches from the three-dimensional points acquired by an airborne LIDAR system. The proposed method consists of establishing adjacency between three-dimensional points, grouping small number of points into seed patches, and growing the seed patches into surface patches. The core features of this method are to improve the segmentation results by employing the variable threshold value repeatedly updated through a statistical analysis during the patch growing process, and to achieve high computational efficiency using priority heaps and sequential least squares adjustment. The proposed method was applied to real LIDAR data to evaluate the performance. Using the proposed method, LIDAR data composed of huge number of three dimensional points can be converted into a set of surface patches which are more explicit and robust descriptions. This intermediate converting process can be effectively used to solve object recognition problems such as building extraction.

최근 들어 항공 라이다 데이터를 도시모델링에 활용하려는 많은 연구들이 진행되고 있다. 도시모델을 구성하는 인공 구조물을 효율적으로 추출하기 위해서는 측정된 3차원 점의 집합으로부터 평면패치를 자동으로 추출하는 것이 중요하다. 평면 패치의 자동 추출에 대한 상당한 연구가 수행되었지만 아직도 추출의 정확도와 완전성 및 계산의 효율성 측면에서 만족할 만한 결과를 얻지 못하고 있다. 이에 본 연구는 항공 라이다 측량으로 취득된 3차원 점의 집합을 자동으로 분할하여 표면패치를 구성하는 효율적인 방법의 개발을 목표로 한다. 제안된 방법은 3차원 점간의 인접성을 수립하고, 소량의 인접점을 그룹핑하여 초기패치를 생성하고, 이를 성장시켜 표면패치를 생성하는 과정으로 구성된다. 제안된 방법은 패치를 성장시키는 과정에서 통계적 분석에 기반하여 가변적으로 설정되는 임계값을 이용하여 분할 결과의 질을 향상시키고, Priority Heap과 순차적최소제곱법에 기반한 효율적인 계산 방법을 사용하였다는 점이 특징적이다. 제안된 방법을 다양한 실측 라이다 데이터에 적용하여 성능을 검증하였다. 제안한 분할 방법을 통해 대용량 3차원 점으로 구성되는 라이다 데이터는 명시적이고 강인한 표현 형태인 표면 패치의 집합으로 변환될 수 있었다. 이러한 중간 변환 과정을 통해 빌딩 추출과 같은 객체 인식의 문제를 효과적으로 해결할 수 있다.

Keywords

References

  1. 김형태, 심용운, 박승룡, 김용일 (2002), LIDAR 데이터를 이용한 수치정사사진의 제작, 한국측량학회치, 제20권, 제2호, pp 137-143
  2. 유환희, 김성삼, 정동기, 홍재민 (2005), LIDAR 자료를 이용한 DTM 생성 정확도 평가, 한국측랑학회지, 제23권, 제3호, pp. 261-272
  3. 이동천, 염재홍 (2005a), LiDAR 데이터를 이용한 수치지도의 건물 및 등고선 레이어 생성, 한국측량학회지, 제23권, 제3호, pp. 313-322
  4. 이동천, 염재홍 (2005b), LiDAR 데이터 분할과 지붕형태 분석에 의한 건물 모델링, 대한토목학회논문집, 제25권, 제6D호 pp. 921-928
  5. 조우석, 좌윤석, 이영진 (2003), 항공 레이저스캐닝 데이터를 이용한 건물 자동추출, 대한토목학회논문집, 제23권, 제5D호, pp. 727-733
  6. 한동엽, 조영욱, 김용일, 유기윤 (2003), LiDAR 데이터의 점밀도에 따른 지물의 3D 모델링, 대한토목학회논문집, 제23권, 제5D호, pp. 711-717
  7. 한수회, 김용일, 유기윤 (2003), LiDAR 반사강도와 DSM을 이용한 토지피복 분류에 관한 연구, 대한토목학회논문집, 제23 권, 제10호 pp. 107-114
  8. Ahuja, N. and Tuceryan, M. (1989), Extraction of early perceptual structure in dot patterns: integrating region, boundary, and component gestalt, Computer Vision, Graphics, and Image Processing, Vol. 48, No. 3, pp. 304-356 https://doi.org/10.1016/0734-189X(89)90146-1
  9. Berg, M. d. (2000), Computational geometry : algorithms and applications, 2nd Edition. Springer, Berlin ; New York
  10. Boyer, K. L., Mirza, M. J. and Ganguly, G. (1994), The robust sequential estimator: a general approach and its application to surface or gainzation in range data, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 10, pp. 987-1001 https://doi.org/10.1109/34.329010
  11. Chaudhuri, B. B. (1996), A new definition of neighborhood of a point in multidimensional space. Pattern Recognition Letters, Vol. 17, No. 1, 11-17 https://doi.org/10.1016/0167-8655(95)00093-3
  12. Chen, L.-H. and Lin, W.-C. (1997), Visual surface segmentation from stereo, Image and Vision Computing, Vol. 15, No. 2, 95-106 https://doi.org/10.1016/S0262-8856(96)01116-X
  13. Csatho, B., Krabill, W., Lucas, J. and Schenk, T. (1998), A multisensor data set of an urban and coastal scene, International Archives of Photogrammetry and Remote Sensing, Vol. 32, No. 3/2, pp. 26-31
  14. Edelsbrunner, H., Kirkpatrick, D. G. and Seidel, R. (1983), On the shape of a set of points in the plane, IEEE Transactions on Information Theory, Vol. 29, No. 4, pp. 551-559 https://doi.org/10.1109/TIT.1983.1056714
  15. Fitzgibbon, A. W., Eggert, D. W. and Fisher, R. B. (1997), High-level CAD model acquisition from range images, Computer Aided Design, Vol. 29, No. 4, pp. 321-330 https://doi.org/10.1016/S0010-4485(96)00059-0
  16. Haala, N. and Brenner, C. (1999a), Extraction of buildings and trees in urban environments, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, No. 2-3, pp. 130-137 https://doi.org/10.1016/S0924-2716(99)00010-6
  17. Haala, N. and Brenner, C. (1999b), Virtual city models from laser altimeter and 2D map data, Photogrammetric Engineering and Remote Sensing, Vol. 65, No. 7, pp. 787-795
  18. Hoffman, R. and Jain, A. K. (1987), Segmentation and classification of range images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 5, pp. 608-620 https://doi.org/10.1109/TPAMI.1987.4767955
  19. Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P. J., Bunke, H., Goldgof, D. B., Bowyer, K., Eggert, D. W., Fitzgibbon, A. and Fisher, R. B. (1996), An experimental comparison of range image segmentation algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 7, pp. 673-689 https://doi.org/10.1109/34.506791
  20. Koster, K. and Spann, M. (2000), MIR: an approach to robust clustering application to range image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 5, pp. 430-444 https://doi.org/10.1109/34.857001
  21. Kraus, K. and Rieger, W. (1999), Processing of laser scanning data for wooded areas, Photogrammetric Week, Institute for Photogrammetry, University of Stuttgart, Stuttgart, Germany, pp. 221-231
  22. Lee, D.-C, Yom, J-H., Kwon, J.-H. and We, G.-J. (2002), 3-Dimensional Building Reconstruction with Airborne LiDAR Data, Korean Journal of Geomatics, Vol. 2, No. 2, pp.123-130
  23. Lee, I. (2002), Perceptual Organization of Surfaces, PhD Dissertation, The Ohio State University, Ohio, USA
  24. Maas, H. G. and Vosselman, G. (1999), Two algorithms for extracting building models from raw laser altimetry data, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, No. 2-3, pp. 153-163 https://doi.org/10.1016/S0924-2716(99)00004-0
  25. Murakami, H., Nakagawa, K., Hasegawa, H., Shibata, T. and Iwanami, E. (1999), Change detection of buildings using an airborne laser scanner, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, No. 2-3, pp. 148-152 https://doi.org/10.1016/S0924-2716(99)00006-4
  26. Richards, F. M. and Mullins, L. J. (1977), Areas, volumes, packing, and protein structure, Annual Review of Biophysics and Bioengineering, Vol. 6. pp. 151-76 https://doi.org/10.1146/annurev.bb.06.060177.001055
  27. Sonka, M., Hlavac, V. and Boyle, R. (1999), Image processing, analysis, and machine vision, 2nd Edition. PWS Pub., Pacific Grove, CA, USA
  28. Toussaint, G. T. (1988), A graph-theoretical primal sketch, Computational Morphology, pp. 229-260
  29. Vosselman, G. (2002), ISPRS test on extracting DEMs from point clouds: a comparison of existing automatic filters. http://www.geo.tudelft.nl/frs/isprs/filtertest/
  30. Yang, M. and Lee, E. (1999), Segmentation of measured point data using a parametric quadric surface approximation, Computer Aided Design, Vol. 31, No. 7, pp. 449-457 https://doi.org/10.1016/S0010-4485(99)00042-1