Implementation of Context-Aware Middleware for Sensor Network in Ubiguitous Environment 9

Implementation of Context-Aware Middleware for Sensor Network in
Ubiquitous Environment

Bo-Seong Kim, Byoung-Hoon Lee, Jai-Hoon Kim"
Graduate School of Information and Communication
Ajou University, Suwon, Korea

ABSTRACT

Recently many researches are investigating for ubiquitous computing and network. In the real world many sensor devices must be
equipped to provide many services for users. To make computing environment easy and more user friendly, middleware system not
only hides all complexities (network, system, services, etc), but also needs to have efficient context inference scheme and system
reconfiguration capability. In this paper we suggest context-aware middleware design for sensor network which provides efficient
computing environment for end-users. We also present XML based implementation of our system.

Keywords: Context Aware Middleware, Ubiquitous, Sensor Network.

1. INTRODUCTION

‘Ubiquitous’ is the most frequently used term to describe
near future briefly. Nowadays, some companies use
‘ubiquitous’ or similar term in TV or newspaper to advertise
their intelligent apartment or products. In general perspective,
however, their apartment or products are very dependent to
specific environment (i.e, small area, homogeneous
communication protocols/channels, and so on). We can
conclude that all of these are the only domain specific
applications using sensor devices equipped with RF or other
wireless mediums. As you know, realization of ubiquitous
environment must be based on general infrastructure
integrating heterogeneous networks and systems. After
establishment of the any solution for integration of such
heterogeneous networks and systems have done, any domain
specific applications need to be deployable. However, this is
not an easy work. For example, assume that we have
established infrastructure for USN (ubiquitous sensor network),
ad hoc network and the Internet, due to the large number of
sensors and mobile nodes which are scattered or embedded on
streets, houses and buildings, too much sensor data traffic will
be present in ubiquitous environment. In this circumstance,
making domain specific applications is too exhaustive process
without the aid of any network or system infrastructure.
Domain specific applications does not concern about sensor
data movement, adjusting network topology, finding location of
peripheral service and evaluation/reconfiguration of current
system status. To realize ubiquitous computing environment,
system must wrap all of those contexts from user [2]. The
better solution is to provide intelligent and general middleware
which can operate autonomously according to user’s preference
or current context status or prediction of future context change.

Some middlewares were developed to enhance the construction
of adaptive and context-aware application [14] and support
automatic configuration and dynamic resource management in
distributed heterogeneous environments[15].

However, it is difficult to wrap diverse context from users
and infer appropriate behaviors of the system. First, system
behavior inferred from context can be categorized roughly as
follows: (1) to deliver destined or suitable service to user (2) to
overcome unreliable network condition via local caching
scheme or other schemes (3) to resolve resource insufficient
problem, migration would be used for load balancing. (i.e.,
energy, memory, CPU capability, disk availability, and so on)
To achieve (1), (2) and (3), middleware need to be designed
carefully to resolve some mobile computing problems caused
in ‘Sensor Network’, ‘Ad-hoc Network’, ‘Service Discovery’
and ‘Mobile Code’ issue.

Our purpose is to design the context-aware middleware
focused on general problems listed above. Since we are not
focused on specific purpose such as voice recognition,
wearable computing, health care, and so on, core of context-
aware middleware have objective to provide flexible and
expandable feature for general use. For user using our
middleware, it provides user (domain specific applications)
with the automatic behaviors of system/network according to
user preference and current context status while letting the
upper layer (application domain) takes application domain
specific functionality. This concept is comparable to
deployment of IPv6’s secure module which is not the original
component of IPv6. That is, IPv6 provides upper layer (ie.,
SMTP, HTTP) with core functionality of network layer while

This study was supported by a grant of Frontier 21 Project of
Republic of Korea.

10

letting the secure module as a separate part of IPv6 itself
(Usually IPv6 recommend that the ‘IPSec’ could be used to
support security of IPv6 core).

To meet the ubiquitous era, many researches are going on
their way and many ubiquitous projects are in there own way.
Following are the well known projects in ubiquitous research
area.

Cooltown — HP [8]

Intelligent Room — MIT [4]

Interactive Workspaces Project — Stanford Univ [9]
The Aura Project — CMU [5]

Easy Living Project — Microsoft [10]

We think that UI (User Interface) could be the most
important factor to win in the commercial application market
area. Sensor devices need to support way of delivering their
raw data to target system. In ad hoc research area, various
routing protocols are emerging and evolving, basically those
are based on traditional routing protocols. Since as you know,
sensor devices are very domain specific and data expression is
variant. In ideal situation, to be compatible with all of the
various system, one easiest way is for sensor manufacturer to
let the device driver or software embedded into sensor device
follow the standard or de-facto raw data description rule (i.e.,
by using XML). In this paper, to differentiate application layer
module (i.e., Service Discovery Description or User Policy)
and low layer module (e.g., Sensor Raw Data, System/Network
Resources) from core of middleware, in the context of
independency of data exchange, we used XML for data
description. XML is used widely as a system independent
language for data-description, process-description and so on
[11].

The next section describes about service categorization and

composite context. Section 3 look at the system overview,
section 4 describes implementation details and, finally, section
5 presents our conclusion.

2. SERVICE UNIT CATEGORIZATION AND
COMPOSITE CONTEXT

2.1 Service Categorization

From the perspective of service provision, we can think user
as a person who wants to be served seamlessly unaware about
system configuration. So middleware must conceive everything
about the contexts which are concerned with user preference.
For doing this, middleware must maintain all of current context
and has the ability to communicate with other module. There
are many possible ways to deliver a particular service to user.
For example, if the current network context is so unreliable,
middleware can deploy a caching module for next network
connection. It is convenient to think caching module as a
CODA file system. In this scenario it is also good to provide
mechanism for existing connected user to switch to local-
caching mode while still maintaining its connection(s). Surely,
other service delivery scenarios which are concerned with not
only network, but also system are possible. As you can see
from above example, user did not need to recognize internal
contexts concerned with problems of unreliable network status.
In this case, context-aware middleware recognizes current
system status and infers best suitable behavior based on current
context.

The Journal of the Korea Contents Association

After this inference process, context-aware middleware tries
to reconfigure current internal system or service delivery way
properly according to the inference result. We categorized unit
for service reconfiguration as below, and these units could be
look like an entity for service provider [2]. (In this
categorization, we consider only general services.)

(1) Services which is provided in ‘Application Domain’

(2) Service which is provided in ‘Middleware’

The former includes all of the application services such as
Video Streaming, Print, FTP, SSH, DNS and so on. In fact
these services are internally registered to middleware. Usually
the provider of service might supply more than one service
implementation. For example, assume that ‘Video Streaming’
service application server provides four service implementations.
First implementation is designed for TCP suitable channel and
client which has strong capability in decoding, second is
designed for TCP suitable channel and client which has weak
capability in decoding. Similarly, Third implementation is
designed for UDP suitable channel and client which has strong
capability in decoding, and fourth is designed for UDP suitable
channel and client which has weak capability in decoding. As
you can see, many varieties for delivering ‘Streaming Service’
are possible.

The latter includes general services categorized as a level of
inherent and dependent characteristic of system. Caching
service also can be implemented as an ‘Application Domain’
service, but it is more efficient and feasible to implement
caching in middleware layer as a middleware service. These
middleware dependent services could be ‘direct network
connection/local caching’, ‘direct disk reference/use memory
buffer’, ‘local execution/code migration’, ‘write back in
software level for power saving by buffering/immediate write’,
and so on. Figure 1 shows categorization of reconfigurable unit
for general purpose middleware.

Application Domain Service Implementation
ExDelaeNe))
[sericesn (5) () (an) = (o)

-

Middleware Internal Services

Disk usage management service
« Direct disk access /+ Use memory buffer

+data *process *class *component *group Servi
ervice

Disk usage management service

Repository
Direct disk access /» Use memeory buffer

[)
(Code migration service }
:)
(

Network Comnection management service
+ Local cached / » Direct connection

Fig. 1. Categorization of service entity which could be a unit of
reconfiguration.

2.2 Composite Context
In previous section, we described the relation between user
and service delivery method. In addition to this relation, user

Implementation of Context-Aware Middleware for Sensor Network in Ubiquitous Environment 1]

can set his personal policy by describing his preference about
interesting service with the composite context condition. The
context-aware middleware is originally designed for the need
of proactive fashion operation. That is, computing environment
of which user is not concerned is desirable. However, user
cannot be entirely excluded from the system for their
convenience. User would want to be delivered ‘S3’ service
from service pool when particular condition is satisfied. For
example, if currently service S which is implemented as ‘n’
number of different types and conforming service
implementation pool (i.e., {S1, S2, 83, ..., Sn}) is registered in
middleware. At this time, suppose that according to the user’s
policy description that is written in XML, user wanted to
execute S3 service where “(MEMORY_available = 126MB
AND CPU_loading < 50%) OR (MEMORY_available = 64MB
AND CPU_loading < 10%)) AND (NIC_status = ON)”. To
reflect user’s preference or his own rule, each user generally
describes his policy and passes it to the middleware [3]. Above
notation is the form of composite context. It is similar to
Boolean computation model. Each context (ie,
MEMORY _available, CPU_loading, NIC_status, and so on.) is
composed to express one condition. We will call such a set of
context information as a ‘Composite Context’. Figure 2 shows
an example XML file for policy and user profile.

<2l version="1.0" 7
- «Contest ML se
- <lzer [0="1" N

123"
oseong Kim" Rolz="Researher" Addrass=
v="Korea" PostalCode="" Tel="81-31-219-2443" Fax="

n

- <Policy 10="1"

zContexrt 10="7" Marm2="NetworkMaxRate" Tyse="Computing’
Uriit="bits /s" value="4500" Tim=="10:33:42"
TypicalValue="2000" LowserBound="5000"
UpperBound="10000" />
</CompositeCo >
<Gervice [D="1 "AccessData" Type="" ImglementationlD="2"
IrmplementationName="Cache" />
</Policy>
- <Policy 10="2">
pasitaContert Name="HighBandwidth">
<Context 10="6" Nama="NetworkDisconnect” Type="Computing”
no/ms" value="0" Time="20:45:12" Typicalvalus="0"
Sound="0" Upperdound="2" />

<Context I0="7" Hamz="NetworkMaxRate" Type="Coemputing'
Unit="bits /s" v3lus="20000" Time="20:45:12"
Typicalalus="2000" LawarBaurd="5000"
Upperbound="10000" />

<R f»

wopntent ID="8" Name="NetworkDelay" Type="Computing®
Unit="ms" valus="90" Time="20:45:13" Typicalvalua="125"

Bound="100" Upperbound="155" /=

i
¥

e="AccessData" Type="' ImplementationiD="1"

Implementationiame="LiveConnection” />

Fig. 2. Sample XML file for representation of user’s information and
policies. As you can see processing of ‘Composite Context’ is the key
feature of inference engine [13].

While we are implementing the context-aware middleware core,
to process composite context description written in XML, we
tried to use pre-existing XML parser. But due to the lack of
processing capability of XML parser for Boolean expression
while obeying regulation of DTD (Document Type Definition)
or XML schema notation, we could not process composite

context. (There was MathML or something like that having
ability to process Boolean model or more complex numeric
expression markup language.) We determined to parse one
more time with the help of original XML parser. In this case,
XML parser acts like a token analyzer. With the use of general
paring method of BNF, we could implement a composite
context processor. This composite context processor parses the
input XML file (written user policy and profile), and then
generates tree and chain data structure. We called this as an
‘evaluation chain/tree’, because once middleware detected
change in context status, start checking for the dependency
concerned with this context. Then evaluation is performed
using ‘evaluation chain/tree’. Finally, middleware perform
reconfiguration work

3. ENTIRE SYSTEM OVERVIEW

Our context-aware middleware has two layers. We called the
upper layer as a ‘Service Layer’ and the lower layer as a
‘Context Configuration Layer’. As you can imagine, context
configuration layer is responsible for the gathering context
information. Abstract design explained in this paper is an
output of our project [13].

3.1. Context Configuration Layer

We define some termination for specific explanation of
design. Let’s begin with context configuration layer first. This
low layer has two important modules namely CAM (Context
Acquisition Module) and CMA (Context Monitoring Agent).
CAM is responsible for gathering, processing and interpreting
the users’ contextual information. It is a ‘context widget’ that
contains CMAs. Each agent is associated with one type of
contextual information (like location, bandwidth, battery, etc.).
Each agent has a state, consists of a set of attributes (variables)
and a behavior (i.e.,, a set of call back functions that are
automatically triggered by context changes). CAM has the
following key responsibilities:

a. To gather context data provided by software services
and/or hardware sensors.

b. To interpret gathered raw sensor data into
meaningful information (like light, battery life,
location, bandwidth, etc.).

¢. Access the CPDB (Context and Policies Database)
with the information derived in step (b).

First, we designed that each sensor devices or system
resources are monitored by CMA (Context Monitoring Agent)
and then CMA converts the raw data into the meaningful
information using XML expression. Then CMA updates this
XML context information into the CPDB (Context & Policy
Database). CPDB is a kind of database which acts as a bridge
repository for the contextual information and policies (how the
middleware has to behave when executing in particular
contexts) for all the users. Policies are applied for delivering
services depending upon context configuration. The major
responsibilities of CPDB are:

® It receives the specifications of the contextual
information for each user from the agents (CMAs)
of the CAM.

12

® These specifications are translated into XML
documents for subsequent processing by the SSM
(Service Selection Module) of the Services Layer.

3.2. Service Layer

Prior to going further details, let’s remind the role of context-
aware middleware. The purpose of our middleware is to
provide appropriate service to user by inferring best behavior
based on current contexts and user policy [7]. To achieve this,
especially the inference engine of middleware must have the
ability to select the best suitable behavior. But, it is not a simple
job to do this. The solution for the selection of the best
behavior might be possible by adopting AI (Artificial
Intelligence) engine. We leave this as a future work and we
decided to design simple inference engine. As a result, now you
might noticed that the previously exploited composite context
give limitation to the ability of inference engine. Due to the
Boolean model based policy description, our inference engine’s
ability is limited. We plan to enhance inference engine in later.

First of all, you must consider that middleware’s service
layer interacts with application domain. As a result, layered
approach for communication is so important. Therefore we
decide not to use language dependent procedure call. This is
naturally understood well by referring previous fact that
composite context or user information is described in XML.
Through the whole design part, we do not reveal language
dependent primitive or exposed API outside.

Service layer is composed of two modules, SSM (Service
Selection Module) and SEM (Service Execution Module). SSM
component is the heart of ‘Context Aware Module’ that
performs the core functionalities. It contains SDA (Service
Discovery Agent) that matches and recommends appropriate
service delivery method from a pool of services after taking
into account the following:

® (Contextual information of the user: This information is
fetched from the CPDB. Context can be composite (i.€.,
comprising many contexts like current context, user’s
device capabilities and constraints set by the ‘Service
Providers’). There are situations where complex event
compositions are required by SSM to monitor
composite events occurring across various
environmental contexts.

® Policies defined by the user: They are also fetched
from CPDB.

In service layer of context-aware middleware, SDA module
could not be easily built due to the lack of exact standard or
specification about service discovery on sensor network or Ad
hoc network. Although in Ad hoc network area, on-demand
based service discovery protocol was proposed [6]. However,
this is not yet implemented and URL based service description
is not sufficient to reflect exact user’s preference. In our
previous work, we had implemented service discovery protocol
for ad-hoc network [12]. In [12], we also had some question
about the URL based service description [6]. So, when we were
engaged in service discovery work, we focused on finding the
method to reflect the user’s preference. Thus we proposed new
service description method which is suitable for reflecting user
preference. Main idea of [12] against service description issue
is that service description must contain the user’s preference
while letting the user is free from any hierarchical constrains or
any rules. To give the freedom of description, [12] devised
property based ‘weighted-vector service description’. It is
similar previous policy description in composite context XML

The Journal of the Korea Contents Association

file. For example, assume that service demander (client or user)
want to find ‘printer service’, namely K, whose property is
‘paper=A4, color=true, resolution>300dpi’. SREQ (Service
Request) packet will contain the property information
concerned with request. After routing through the whole or
some node, this SREQ packet will be examined against
resources status of current node. If current node has a candidate
service provider, this node will reply as SREP (Service Reply).
In this property based service description could be extended to
including the weighted value against each property. (ie.,
S {paper=A4*[0.6], color=true*[0.1], resolution> 300dpi*[0.3]}
< p, where p is proximity)

If SDA adopted our property based weighted vector protocol,
you can easily make a relation with the contents of composite
context based XML file. Actually, user’s policy is similar to
user’s preference and composite-context description is similar
to the way of [12]’s property based weighted vector description
protocol. So we could easily implement the SDA module. Also
it was proved that property based weighted vector protocol
minimizes control packets such as RREQ, RREP and RERR. In
Furthermore, property based weight vector protocol does not
perform string matching processing. As a result, we can save
computing power and get a fast response time.

SEM module carries out the execution of the service. There
are two types of execution:
a. In case of services residing on the device, execution
is always local to the device.
b. For remote services, execution can be local or remote.
In the remote invocation, the client remotely sends a
request to a provider asking the execution of a
service. The execution takes place at the provider
platform. In local invocation the client remotely asks
to transfer a copy of the service. After being transferred,
the execution takes place at the client side.

3.3 Sequence Flow and Use case

Applications ¢ Presgntation Layese

»
S,
i
¢
i] & § &
. 3 Ay Eh F
S5M Service Selecton Modue fenntaing S04 i &3
BA: Bewvice Distovery Agord i
SEM: Barvice Execution Module

CRDB: Cantaxt and Polickes DataBase
CANM: Context Acquisition tadiude
CRAs: Dantext Manitoring Agonts

o XN

CPOB

Context
- onfigusation-e
Layer

AN
{ontaing ChiAs)

e
ot
-
protosol

private

Phyygical Layar

Fig. 3. Block diagram of Context-Aware Middleware [13]. In
implementation, middleware system does not use language
dependent APIs.

Figure-3 shows layered structure of middleware and the
interactions between each component. General execution

Implementation of Context-Aware Middleware for Sensor Network in Ubiquitous Environment 13

sequence of middleware is as follows:
1. Each CMA of CAM detects change in context and
callback function is triggered
2. user requests a service (through exposed APIs)
3. Service layer access CPDB & selects suitable
service
> SDA of SSM consults service registration
information in CPDB, then selects the appropriate
service delivery method by executing inference
engine.
4. execute selected service
Figure 4 shows execution sequence.

;mmm}

| cPoB
1
1 1 updates |
i .
4 i
A
g 1
i
i
]
1

b
|
i
|

1 i
i

-) i 2. reciesis @ service (heough exposed AP
CMA of CAM discavers change kil LJ

|

13, cansuts & pelecis

in context and therefore
callback function is triggered

¢

]

1

]

:

- 3
'SDAof SSMconsults. 1 | i
i1

'

:

1

]

/

'

1 i |

! icontext & policies and ! § ewabe
1 selects the appropriate

H {senice delivery mathod 1T

i A Iansase

S3M: Servicw Selection Module
SDA" Seevics Discovery Agent
SEM: Service Exacution Module
CPOB: Gontext and Policies DataBase
CAN: Cortent Acquisiton Moduie
ChiAs: Contaxt Mositoring Agents

Fig. 4. Sequence diagram of context-aware middleware [13].

3.4. Implementation of CPDB

In the perspective of implementation of CPDB (Context &
Policy Database), a number of database designs are possible
using relation database.

mapping between these two tables exists. Actually in our
implementation of middleware, ‘User’ table is in the center of
DB design because implementation could be better easier by
deploying ‘User’ as a main object.

Although, in this paper we are using CPDB only to refer
database for context and policy information only, in real
implementation CPDB module contains not only context and
policy information but also service information too.

4. IMPLEMENTATION DETAILS

Until now, abstract design of context-aware middleware was
presented. From now on, some implementation concerned
explanation will be followed. Middleware was implemented
using Java programming language. The purpose of
implementation work is to use it as a base framework for future
component based context-aware middleware. Following
sections explain functionality and relations of each module.

4.1 Low Level Resource Monitoring

We used virtual device driver approach for general purpose.
There are many resources in present, but near the future new
many resources will emerge. Therefore, middleware must
consider extension of system. In the view point of middleware
low level, to include all of the drivers in the middleware system
in built time is not a good idea. When middleware was
deployed once, inserting a new device driver requires
rebuilding of entire system. To avoid this drawback, we used
virtual device driver approach. In the concept of virtual device
driver, all of the device dependent functions are implemented
as an OS dependent device driver and this OS dependent device
driver communicates with virtual device driver which is an
element of middleware system. Using virtual device driver
approach makes view of each resource be conceptual, and
XML communication/generation matters be simple.

‘] sar
Contaxt . CirmgositeConast oK |UseriD
P¥ [Context (D PK {CompContaxt ID
name
name name role
typer FK1 {ContextBits address
unit FK2 {Compe its city
valugs AND country
tme OR postaiiede
typical_vatus NOT ted
ferwee_bound type fax
upper_baund value emait
unit 7'y

f

Puoligy
PK | Policy 1D

FK1 |Usor_iD
¥K3 | CompContext_iD
FK2 | Servicelmp_ 10

I

Service Sorvicalmplemsntativn
PK |Service |0 PK | Serviceimp 1D
name name
type FK1 | Service_iD
details

Fig. 5. Database design for CPDB in Relational-DataBase [13].

Assume that current node adopted RDBMS system as a
middleware database system. In our opinion sensor node or Ad
hoc node cannot afford to maintain DBMS. Thus, simple data
structure is appropriate for sensor node instead of heavy
RDBMS. In this case, we should design the DB table relation.
In Figure 5, as you can see ‘policy’ table is in the center of the
DB. Compare closely ‘Service’ table and ‘ServicelImplementation®
table each other. You could detect the fact that one to ‘N’

P

Vistual Device Driver

Virtual Device Driver

Virtual Device Daver :
e st R kit aae s |

Fig. 6. Implementation hierarchy of ‘virtual device driver’.
4.2 Framework for Management of Virtual Device Drivers

Each monitoring software module consists of OS dependent
device driver and neutral type of virtual device drivers. Also,
each monitoring module could run as a single thread or process.
We used thread approach to implement resource monitoring
software.

To manage resource monitoring software through the single
way, we adopted Java singleton programming model. And, we
called this singleton as a ‘framework for management of virtual
device driver’. In the step of initialization of framework,
default virtual device drivers are created and initialized to be
ready to run. This framework provides a GUI for user to control
the behavior of each thread of virtual device driver. There are

14

two control options. (i.e., attach/detach) By initiation of ‘attach’
command, virtual device driver thread will execute its own
function. Vice verse, ‘detach’ command will make thread to
suspend. When we need to turn on or off the monitoring
functionality of real device driver, we must have a way to
manage the execution of multiple threads. To resolve this
problem, we let the virtual device driver handle GUI event.
That is, virtual device driver is registered as an event listener of
GUI component. As a result GUI message generated by user is
delivered to virtual device driver. Finally, virtual device driver
requests framework to make thread be suspended. To provide a
common way of attach and detach operations, framework
implemented interface ‘CMA Controlable’.

Due to the consistency problem between multiple threads,
framework was implemented to use critical section locking
method by ‘synchronized’ keyword. This critical section is
applied to the ‘thread control code’ and ‘context database
access code’.

DeviceSimulationFramework

=
aenmrnilil o defsch(

N

Virtual device driver (B) “Virtual device driver (n)

? 1 o ¢
S abeicosaton | 4 |0 [ndatetmaton | D "] M

Virtual device driver (4)

ﬂ I:[“ae N
I Device driver l | Device driver J r Device driver I
r Resource #A | I Resource #4 I I Resource #n J

Fig. 7. Framework for virtual device driver.

We tried to include GUI for easy configuration environment.

4.3. Database for Middleware (SDB, PDB and CDB)

Explanatory description does not present about database. As
mentioned in section 3.4, our middleware use three repositories
for service, policy and context. Each of which are SDB, PDB
and CDB class and has general database operations such as
ADD, DELETE, UPDATE, RETRIEVE and so on.

4.4 Context Acquisition Module (CAM)

CAM plays a role of ‘module management core’. Our
context-aware middleware runs as a single process. Actually, a
number of threads are created from main thread and each
spawned thread performs particular work such as resource
monitoring, accepting user request and management of each
modules. In our implementation, Context-Acquisition Module
works as a main thread. Therefore CAM creates Context-
Monitoring Agent (CMA) which is explained previously (refer
‘4.1. Low Level Resource Monitoring’ for more information.),
and service concerned modules which will be covered later.
Also, CAM creates database for policy, service and context.

In figure 8, waved arrow represents execution of single thread.
Policy, service and context processor use our extended XML
parser commonly, but each processor uses different database
module (i.e., PDB, SDB and CDB). Service module is composed of
two sub modules (i.e., external and internal service module).
External service module deals with services provided by external
service provider and internal service module deals with
reconfiguration of network and system resources. That is, service
module implemented according to design specification of figure 1.

The Journal of the Korea Contents Association

5 Service Module (with GUT} :
i i
' .
i | Extemal service Module Internal Service Module :
L | claer Sarvies DisosveryModle Cnodingor ..
: el ServieSelae donModuls R [
| ekess Serviebrecution¥odule C
R g e m e m m e mm e e mm H
,,ﬂ_l_:b I ;
= . /
Context Acquisition Module {TAM
PDB Q. is {CAM)
sz ZokerDB w| class ContextAcquisitionModule i
RS p— - 4
~\S}a pihase preating Thread spuwning [/
€T | et <policy DE> ice Module &
| ref. <service DB> : m“ o " Deliey Processar
SDB p L /m_ﬂ <context DB> . o TolpPramer
el Sarprealty P L
ek Y o o SevireProcesser
R I . N 5
PN ——————— AL precesoms creatlen o v chot ServinTiucaens
P emeteaer—"} wref. <paficy processor> AN R
CDB » sref, <service processer> : Condext Frosessex
sref. <corfext processor>., it Comenrecsor
b Comtaxsill
etk
WNIITS T
. *J‘fx "«/L
| Low Level Resource Monitering (with GUL}
| class DeviceSimulation Framework
)
(Mnl]}vim Driver,

Fig. 8. Overall implementation diagram with CAM in center.

4.5 Inference Engine Considering Boolean Model

As we mentioned previous section, user policy and service
provider’s constraints are described in the XML document
using composite context expression which is based on Boolean
model. This policy and constraints are stored in the PDB and
middleware will refer PDB whenever service needs to be
delivered. At this time middleware determines proper service
delivery method based on policy and constraints information.
Determination or inference process contains evaluation of each
policy.

User policy ‘3 — Constraints G
(M docy Lo \\]QVEN}‘/'”M (XML doe)
User polic [— Y Const raimgs
(e doe) \\ e (R o0 |
Y
S

S Lisar Roquest i
Fatification fr

Inference-Engine execution initiation
1. Feck evaiur o
2. Ewahuate trec s
3 Fach rervice s
& Erecute service

Fig. 9. Process diagram of inference engine.

To speed up evaluation process, we used tree based chain. It
is created whenever new policy or profile or constraints were
given and called ‘evaluation chain/tree’. Time complexity of
this policy decision is O(lg(n)) where n is length of composite
context if decision tree is well balanced.

Implementation of Context-Aware Middleware for Sensor Network in Ubiquitous Environment 15

5. APPLICATION

BSS(Basic \.S‘ervice
S /s o =% SEt) N

Fig. 10. Reconfiguration of network topology

To verify usage and application of our context-aware
middleware, we implement and test context-aware software on
our middleware platform. As a demonstration of our context-
aware middleware, we implement reconfiguration of network
topology. The reconfiguration is performed according to
network context-aware captured by our middleware. In the
demonstration, mobile host can choose appropriate network
protocol between WLAN and ad-hoc. When a mobile host is in
the range of AP (access point), it selects high performance
WLAN while choosing ad-hoc at the outside of AP. In the ad-
hoc protocol, other mobile hosts act as a gateway.

6. CONCLUSION AND FUTURE WORK

In this paper we have exploited context-aware middleware
design and its implementation issues together. Our context-
aware middleware was also designed to provide user with easy
way of service using rather than overcoming resource
restrictions by itself. The most valuable factor of our context-
aware middleware is always recommending the suitable
behavior for the user by referring current context/policy. In fact,
our context-aware middleware can be upgraded by inserting Al
inference engine. Furthermore, because any sensor or handheld
devices always treated as a concept of context by middleware
core, middleware does not reveal any dependency against every
device.

We are going to attach more intelligent inference engine.
Our long term final goal is to design context-awareness for
community computing.

REFERENCE

]

[1] LF. Akyildiz, et. al., “Wireless sensor networks: a survey,’
Computer Networks, Vol. 38, March 2002, pp.393-422.

[2] Stephen S.Yau, Fariaz Karim, Yu Wang, Bin Wang, and
Sandeep K. S. Gupta, “Reconfigurable Context Sensitive
Middleware for Pervasive Computing,” IEEE Pervasive

Computing, joint special issue with IEEE Personal
Communications on Context-Aware Pervasive Computing
IEEE Computer Society Press, Los Alamitos, USA, 1(3),
July-September 2002, pp.33-40.

[3] J.Keeney, V.Cahill, “Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework,” Fourth IEEE
International Workshop on Policies for Distributed
Systems and Networks ‘POLICY 2003’, Italy, June 2003.

[4] Rodney Brooks. “The Intelligent Room Project,” 2nd Int.
Cognitive Technology Conference, Aizu, Japan, 1997.

[5] Steenkiste, P., “Aura: Invisible Ubiquitous Computing,”
Computer Systems Seminar, ETH Zurich, October 2002.

[6] R. Koodli and C. E. Perkins, “Service Discovery in On-
Demand Ad Hoc Networks,” Internet draft, MANET
Working Group.

[71 A. Rakotonirainy, J. Indulska, Seng Wai Like, Arkady
B.Zaslavsky, “Middleware for Reactive Components: An
Integrated Use of Context, Roles and Event Based
Coordination,” IFIP/ACM International Conference on
Distributed Systems Platforms, Middleware 01. (LNCS
Vol. 2218), 2001, pp.77-98.
draft-koodli-manet-servicediscovery-00.txt, Sep. 2002.

[8] HP cooltown project http://www.cooltown.com/cooltown/

[9] Stanford, Interactive Workspaces Project
http://iwork.stanford.edu/

[10] Microsoft, Easy Living Project
http://research.microsoft.com/easyliving/

[11] Java Technology & XML — Documentation
http://java.sun.com/xml/reference/docs/index.html

[12] Bo-seongK, Young Ko, “Implementation of service discovery on
routing layer in Ad-hoc network environment,” The Korean
Information Science Society ,Vol. 31, September 2004.

[13] Arsalan Minhas, “Adaptive Middleware for Ubiquitous
Computing,” Tech. Report, Ajou University, June 2004,

[14] L. Capra, W. Emmerich and C. Mascolo., “CARISMA:
Context-Aware Reflective mlddleware System for
Mobile Applications” IEEE Transactions on Soft Eng,
Volume 29, Num. 10, 2003, pp.929- 945.

[15] F.Kon, JR. Marques, T. Yamane, R.H. Campbell, and
M.D. Mickunas, “Design, implementation, and
performance of an automatic con_guration service for
distributed component systems” Software: Practice and
Experience, 35(7), May

Bo-Seong Kim
He works for Samsung FElectronic
Company. He received the B.S. and M.S.
degree in Information and Communication
Engineering, Ajou University, Suwon,
South Korea, in 2004 and 2006,
wodbisiiaes yespectively. His main research interests
include system software, distributed system and ad hoc network.

16

4

Byoung-Hoon Lee

He received the B.S. and M.S. degree in
Computer Engineering, Chungbuk National
University, Cheongju, South Korea, in 1998
and 2000, respectively.

He is a graduate student of Graduate School
of Information and Communication at Ajou

University, Korea. His main research interests include ubiquitous
computing, distributed system and embedded programming

Jai-Hoon Kim
He received the B.S. degree in Control and
Instrumentation Engineering, Seoul

National University, Seoul, South Korea, in
1984, M.S. degree in Computer Science,
Indiana University, Bloomington, IN,
US.A., in 1993, and his Ph.D. degree in
Computer Science, Texas A&M University,

College Station, TX., US.A,, in 1997. He is currently an
associate professor of the Information and Communication
department at Ajou University, South Korea. His research
interests include Distributed Systems, Real-Time Systems,
Mobile Computing and Ubiquitous Computing.

The Journal of the Korea Contents Association

