Changes of Epiphytic Algal Communities on Reed at the Shiwha Constructed Wetland in the Early Years of the Completion

시화인공습지 완공 초기에 갈대 부착조류 군집의 변화

  • Published : 2006.09.30

Abstract

The Shihwa constructed wetland was established to treat the severely polluted water from Banwoul, Donghwa and Samhwa streams. This study was focused on investigating the dynamics of epiphytic algal communities on reed (Phragmites communis) planting area at 5 stations from October 2001 to June 2002. The concentration of total nitrogen and phosphorus of inlet stations from the streams were decreased after flowing through the wetland. However, the TN : TP ratios at all stations were slightly over 16 indicating that the total phosphorus may play some role as a limitation factor. Epiphytic algae on the reed were total 329 taxa which were composed of 295 species, 13 varieties, 3 forma and 18 unidentified species. The species numbers were recorded in the order of Chlorophyceae-Bacillariophyceae-Cyanophyceae-Euglenophyceae-Chrysophyceae. The relative percentage showed a seasonal variation from Cyanophyceae to Bacillariophyceae and to Chlorophyceae. The biomass of epiphytic algae measured by chlorophyll-a concentration ranged from 0.6 to $36.4\;{\mu}g\;cm^{-2}$. Dominant species were 16 taxa which were Lyngbya angusta of Cyanophyceae in the early investigation, and were changed to Stigeoclonium lubricum of Chlorophyceae, and Nitzschia palea of Bacillariophyceae etc. in the late. Species number, standing crops and chlorophyll-a concentrations of epiphytic algae showed higher values at the inlet stations than the stations after flowing through the wetland.

오염된 하천 수질 정화를 위해 조성된 시화 인공습지에 식재된 갈대 부착조류 군집 동태를 규명하기 위해 5개의 정점을 선정하여 2001년 10월부터 2002년 6월까지 조사를 실시하였다. 상류 하천에서 유입된 영양염류는 갈대군락을 관류하면서 감소하는 경향을 나타내었다. 총질소에 대한 총인의 비가 모든 정점에서 16 이상을 상회하여 본 조사수역은 인이 제한 영양염으로 작용하는 것으로 추정된다. 갈대 부착조류는 295종, 13변종, 3품종 및 18미동정종으로 구성된 총 329종류가 출현하였다. 출현종의 구성은 녹조강-규조강-남조강-유글레나강-황갈조강의 순으로 조사되었다. 분류군별 종 구성비는 정점 간에 약간의 차이는 있지만 전반적으로 조사기간 동안 남조강-규조강-녹조강으로 변화되었다. 엽록소 a 농도는 하천수 유입지점인 정점 1과 3에 비해 관류된 후 지점인 정점 2와 4에서 높게 나타났다. 총 16종류의 우점종이 조사되었으며, 조사 초기에는 Lyngbya angusta 등 남조강이 출현하였고, 조사 후기인 봄과 여름철에는 Stigeoclonium lubricum 등 녹조강과 Nitzschia palea 등 규조강이 우점종으로 나타났다. 갈대 부착조류의 종 다양성 및 현존량은 하천수 유입 정점보다 습지 관류 후에 증가하는 경향을 나타내었는데 이것은 습지를 관류하면서 부유물질 등이 습지를 통해 제거됨으로서 부착조류의 생육조건을 개선시킨 것으로 사료된다.

Keywords

References

  1. Adamus, P.R. and L.T. Stockwell. 1983. A method for wetland functional assessment: VII. 1. Critical review and evaluation concepts. US Dept. Trnasportation, Fedral Highway Administration. Report FHWA IP: 82-83
  2. APHA. 1992. Standard methods for the examination of water and wastewater, 18th. Ed., American Public Health Association. Washington, DC
  3. Boylen, C.W. and T.D. Brock. 1973. Effects of thermal additions from the Yellowstone geyser basins on the benthic algae of the Firehole River. Ecol. 54: 1282-1291 https://doi.org/10.2307/1934190
  4. Braakhekke, W.G. and M. Marchand. 1987. Wetlands: The community's wealth. European Environment Bureau. Brussels. 24
  5. Canale, R.P. and A.H. Vogel. 1974. Effects of temperature on phytoplankton growth. J. Environ. Eng. 100: 229- 241
  6. Carlton, R.G. and R.G. Wetzel. 1988. Phosphorus flux from lake sediments: effects of epilithic algae oxygen production. Limnol. Oceanogr. 33: 562-570 https://doi.org/10.4319/lo.1988.33.4.0562
  7. Chapra, S.C. 1979. Applying phosphorus model for the Great Lakes. J. Environ. Eng. Div. ASCE. 103: 147- 161
  8. Delgado, J. 1986, Perspectivas economicas de los parques nacionales Venezolanos. pp. 60-65. In: E. Cardich (ed.). Conservando el patrimonio natural de la region mesotropical. IUCN, Gland, Switzerland. 142pp
  9. Ghosh, D. and S. Sen. 1987. Ecological history of Calcutta's wetland conversion. Environm. Conserv. 14: 219-226 https://doi.org/10.1017/S0376892900016416
  10. Haper, D.M. and W.D.P. Stewat. 1987. The effects of land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes: comparative studies of three lochs in Scotland, Hydrobiologia 148: 211-229 https://doi.org/10.1007/BF00017525
  11. Hendey, N.I. 1979. The permanganate method for cleaning freshly gathered diatoms, Microscopy 32: 423-426
  12. Heyman, J.R. 1988. Self-Financed Re-source Management: A direct approach to maintaining marine biological diversity, Paper presented at workshop on economics, IUCN General assembly, 4-5 Feb. 1988, Costa Rica, 234-235
  13. Horn, A.J. and C.R. Goldman. 1994. Limnology, McGraw- Hill, Inc., New York 115
  14. Jun, M.S., Y. Watanabe and B.C. Kim. 1998. The effects of dilution rate and temperature on phytoplankton growth in stream water, Korean J. Limnol. 31: 328-336. (in Korean)
  15. Kadlec, R.H. and R.L. Knight. 1996. Treatment wetlands, Lewis Publishers, Boca Raton, 893
  16. Katharian, A., M. Engelhardt and M.E. Ritchie. 2001, Effects of macrophytes species richness on wetland ecosystem functioning and services. Nat. 411: 687-689 https://doi.org/10.1038/35079573
  17. KOWACO. 2001. Monitoring in the Shihwa Constructed Wetland Project, Korea Water Resources Corporation, 160. (in Korean)
  18. KOWACO. 2002. Study on Operation and Management of Shihwa Constructed Wetland Project, Korea Water Resources Corporation, 550. (in Korean)
  19. McCormick, P.V. and M.B. O'Dell. 1996. Quantifying periphyton responses to phosphorus in Florida Everglades: a synoptic-experimental appproach. J. New Am. Benthol. Soc. 15: 450-468 https://doi.org/10.2307/1467798
  20. Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands. John Wiley & Sons, New York
  21. OECD. 1979. Eutrophication of Waters. Monitoring, Assessment and Control. OECD Publ., 153pp
  22. Patrick, R. 1969. Some effects of temperature on freshwater algae, pp. 161-198. In: Krenbal P.A. and F.L. Parker (ed.), Biological aspects of thermal pollution. Vanderbilt Univ. Press, Nashiville, Tenn
  23. Rohlich, G.A. 1963, Methods for the removal of phosphorus and nitrogen from sewage plant effluents, J. Air water pollution, Perganon Press. 427-434pp
  24. Scinto, L.J. and A.R. Reddy, 2003. Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquatic Bot. 77: 203-222 https://doi.org/10.1016/S0304-3770(03)00106-2
  25. Shannon, C.E. and W. Weaver. 1963. The Mathematical theory of communication. Illinois Univ. Press, Urbana, 177pp
  26. Sheldon, R.B. and C.W. Boylen, 1975. Factors affecting the contribution by epiphytic algae to the primary productivity of an oligotrophic freshwater lake. Applied Microbiol. 30: 657-667
  27. Shimpson, E.H. 1949. Measurement of diversity. Nature 163: 1-688 https://doi.org/10.1038/163001a0
  28. Wetzel, R.G. 1983. Limnology, 2nd ed. Saunder, Philadelphia, 743 pp
  29. Wetzel, R.G. 1996. Benthic algae and nutrient cycling in lentic freshwater ecosystems. In: Stevenson, R.J., Bothwell, M.L., Lowe, R.L. (Eds.), Algal Ecology: Freshwater Benthic Ecosystem. Academic Press, New York, pp. 641-667