DOI QR코드

DOI QR Code

FORMATION OF KETOACIDS AND AOC DURING OZONATION IN DRINKING WATER

  • Lee, Kyung-Hyuk (Water Research Center, Korea Institute of Water and Environment)
  • Published : 2006.12.31

Abstract

The reaction of ozone with NOM (Natural Organic Matter) can occur by two different pathways: that involving molecular ozone and by way of reactions with hydroxyl radicals which are produced from the decomposition of molecular ozone. As such, the formation of ketoacids and Assimilable Organic Carbon (AOC) can be controlled by controlling the pathway by which ozone reacts with NOM. The ratios of $[OH{\cdot}]/[O_3]$ ($R_{CT}$ values) were determined under the various ozonation conditions. The $R_{CT}$ values increased with increasing initial ozone concentration. The $R_{CT}$ values (ranges from 10 to $35^{\circ}C$) increased linearly as temperature increased (within the range from 10 to $35^{\circ}C$). However, $R_{CT}$ was independent of hydraulic retention time (HRT). Operational conditions were found to affect the formation of AOC. The conditions where the molecular ozone reaction predominated resulted in an increase in the formation of AOC.

Keywords

References

  1. Bader H., Sturzenegger V., and Hoigne J., 'Photometric Method for the Determination of Low Concentrations of Hydrogen peroxide by the Peroxidase Catalyzed Oxidation of N,N,-diethyI-p-phenylenediamine (DPD)', Wat. Res., 22(9), 1109-1115 (1998)
  2. Bouxton G. V., Greenstock C. L., Helman W. P., and Ross A. B., 'Critical Review of Rate Constants for Reactions of Hydrated electron, Hydrogen Atoms and Hydroxyl Radicals (OH-./O-.) in Aqueous Solution', J. Phys. Chern. Ref Data., 17, 518-759 (1988)
  3. Charnock C., and Kj0nn0 O., 'Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon in Norwegian Raw and Drinking Waters', Wat. Res. 34(10), 2629-2642 (2000) https://doi.org/10.1016/S0043-1354(00)00007-5
  4. Elovitz M., and von Gunten U., 'Influence of Temperature, pH, and DOM Source on Hydroxyl radical/Ozone Ratios during Ozonation of Natural Waters', 13th Ozone World Congress, Kyoto, Japan, pp. 475-480 (1997)
  5. Gracia R.A., and Ovelleiro J. L., 'Study of the Catalytic Ozonation of Humic substances in Water and their Ozonation Byproducts', Ozone. Sci. & Engrg., 18, 195-208 (1996) https://doi.org/10.1080/01919519608547326
  6. Griffini O., Bao M. L., Barbieri K., Burrini D., Santianni D., and Pantani F., 'Formation and Removal of Biodegradable Ozonation By-Products during Ozonation-Biofiltration Treatment': Pilot Scale Evaluation. Ozone Sci. & Engrg. 21, 79-98 (1999) https://doi.org/10.1080/01919519908547261
  7. Kuivinen J. and Johnsson H., 'Determination of Trihalomethanes and Some Chlorinated Solvents in Drinking Water by Headspace Technique with Capillary Column Gas-Chromatography', Wat. Res., 33(5), 1201-1208 (1999) https://doi.org/10.1016/S0043-1354(98)00311-X
  8. Lykins B. W., Koffskey W. E., and Patterson K. S., 'Alternative Disinfectants for Drinking Water Treatment', J Environmental Engineering. 120(4), 745-758 (1994) https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(745)
  9. Masten S. J., Tian M., Upham B. L., and Trosko J. E., 'Effect of Selected Pesticides and their Ozonation By-products on Gap Junctional Intercellular Communication Using Rat Liver', Chemosphere, 44(3), 457-465 (2001) https://doi.org/10.1016/S0045-6535(00)00296-4
  10. Masten, S. J., Tian, M., B. L. Upham, and 1. E. Trosko. 'Effect of Selected Pesticides and Their Ozonation By-Products on Gap Junction Intercellular Communication Using Rat Liver Epithelial Cell Lines'. Chemosphere. 44(3), 457-465 (2001) https://doi.org/10.1016/S0045-6535(00)00296-4
  11. Miettinen I, T., Vartianinen T, and artikainen P. J., 'Determination of Assimilable Organic Carbon in Humus-Rich Drinking Waters', Wat. Res., 33(10), 2277-2282 (1999) https://doi.org/10.1016/S0043-1354(98)00461-8
  12. Richardson S. D., Thruston A. D., Caughran T. V., Chen P. H., Collette T. W., Floyd T. J., Schenck K. M., Lykins B. W., Sun G. R., and Majetich G., 'Identification of New Ozone Disinfection Byproducts in Drinking Water', Environ. Sci. & Technol. 33(19), 3368-3377 (1999) https://doi.org/10.1021/es981218c
  13. Sotelo L. J., Beltran F. J., Benitez F. J., Beltranheredia J., 'Ozone Decomposition in Water': Kinetic Study, Ind. Eng. Chem. Res., 26. 39-43 (1987) https://doi.org/10.1021/ie00061a008
  14. Speitel G. E., Symons J. M., Diehl A. C., Sorensen H. W., Cipparone L. A., 'Effect of Ozone Dosage and Subsequent Biodegradation on Removal of DBP Precursors', J AWWA., 85(5), 86-95 (1993) https://doi.org/10.1002/j.1551-8833.1993.tb05989.x
  15. Greenberg, A. E., Clesceri, L. S., and Easton, A. D., 'Standard Methods for the Examination of water and wastewater', 18th , Eds., APHA, AWWA, WEF (1992)
  16. Staehelin J., and Hoigne J., 'Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ion and Hydrogen Peroxide', Environ. Sci. & Technol., 16(10), 676-681 (1982) https://doi.org/10.1021/es00104a009
  17. Van der Kooij D., and Hijnen W. A. M., and Kruithof J. C., 'The effects of Ozonation, Biological Filtration, and Distribution on the Concentration of Easily Assimilable Organic Carbon in Drinking Water', Ozone Sci. & Engr., 11(3), 297-311 (1985)
  18. Westerhoff P., Aiken G., Amy G., and Debroux J., 'Relationships between the Structure of Natural Organic Matter and its Reactivity towards Molecular Ozone and Hydroxyl Radicals', Wat. Res., 33(10), 2265-2276. (1999) https://doi.org/10.1016/S0043-1354(98)00447-3
  19. Xie Y., and Reckhow D. A., 'Formation of Ketoacids in Ozonated Drinking Water', Ozone Sci. & Engrg., 14, 269-275 (1992) https://doi.org/10.1080/01919519208552480
  20. Yao J. J., Huang Z., and Masten S. J., 'The Ozonation of Pyrene: Pathway and Product Identification', Waf. Res. 32(10), 3001-3012 (1998) https://doi.org/10.1016/S0043-1354(98)00056-6

Cited by

  1. Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water vol.24, pp.3, 2018, https://doi.org/10.4491/eer.2018.299