DOI QR코드

DOI QR Code

우리나라 대학생들의 운동학 그래프 이해 능력

Testing undergraduate interpretation of kinematics graphs

  • 김태선 (노스캐롤라이나주립대학교)
  • 발행 : 2006.02.28

초록

그래프는 물리학자들이나 물리교육자들에게는 좋은 의사소통 도구가 되며, 실험세계를 그래프로 보여줄수 있는 정보전달의 기능을 수행하는 것으로 여겨졌다. 따라서 그래프를 작성하고 해석할 줄 아는 능력은 매우 중요하다. 본 연구에서는 운동학 그래프 해석 능력 검사 도구를 이용하여 우리나라 광역시 180명 대학생들의 운동학 그래프 이해 능력을 조사하였다. 우리나라 대학생들은 위치-시간 그래프에서 속도를 결정하거나, 속도-시간 그래프에서 가속도나 변위를 결정하는 기능에서 높은 정답률을 보였으며, 위치-시간 그래프를 속도-시간 그래프로 변환하거나 가속도-시간 그래프로 변환하는 기능에서 가장 낮은 정답률을 보였다. 또한 그래프와 관련된 지문을 연결하는 기능도 다른 기능들에 비하여 비교적 낮은 정답률을 보였다.

Line graphs are powerful tools in conveying complicated relationships and ideas because they show the relationship that exists between two continuous variables. Also, they can show readers the variations in variables and correlate two variables in a two dimensional space, and therefore, line graphs have a significant role in physics, especially kinematics. One of the purposes of the Test of Understanding Graphs in Kinematics (TUG-K) was to uncover student problems with interpreting kinematics. The TUG-K was given to Korean college students in 2004. To what extent are Korean college students able to understand such important line graphs? Analysis of the results of the TUG-K showed in which objectives students' strengths and weaknesses are found. This study investigates Korean college students' interpretation skills of kinematics graphs and the results of the study will be used to help instructors teach kinematics graphs more effectively.

키워드

참고문헌

  1. 권성기 (1987). 대학생의 운동학 그래프 작성에 대한 역학 개념의 효과. 한국과학교육학회지, 17(4), 383-393
  2. 김태선 (1998). 고등학생들의 과학 관련 그래프 해석 능력. 한국교원대학교 석사학위논문
  3. 김태선, 고수경, 김범기 (2005). 고등학생들의 그래프 능력과 과학 탐구 능력 및 과학 학업 성취도의 관계. 한국과학교육학회지. 25(5), 624-633
  4. 김태선, 김범기 (2002). 중고등학생들의 과학 그래프 작성 및 해석 능력. 한국과학교육학회지, 22(4), 768-778
  5. 김태선, 김범기 (2005). 과학관련 선 그래프를 해석하는 고등학생들의 발성사고 과정 분석. 한국과학교육학회지, 25(2)
  6. 김태선, 배덕진, 김범기 (2002). 중학생의 그래프 능력과 논리적 사고력 및 과학 탐구 능력의 관계. 한국과학교육학회지, 22(4), 725-739
  7. 문충식, 김범기 (1998). 선 그래프 해석과 이해의 지각 . 인지 과정에 관한 모형-힘과 운동 관련 선 그래프를 중심으로-. 물리교육, 16(2), 72-82
  8. Aubrecht G. U., & Aubrecht, U. (1983). Constructing objective tests. American Journal of Physics, 51, 613-620
  9. Barclay, W. L. (1986). Graphing misconceptions and possible remedies using microcomputer-based labs. Paper presented at the 1986 National Educational Computing Conference, San Diego, CA
  10. Beichner, R. J. (1990). The effect of simultaneous motion presentation and graph generation in a kinematics lab. Journal of Research in Science Teaching, 27(8), 803-815
  11. Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750-762
  12. Bertin, J. (1983). Semiology of graphics: diagrams, networks, maps (W,J. Berg, Trans.), Madison, WI: University of Wisconsin Press
  13. Brasell, H. M. (1987). Effectiveness of a microcomputer-based laboratory in learning distance and velocity graphs. Doctoral dissertation, University of Florida
  14. Brasell, H. M. (1987). The effect of real-time laboratory graphing on learning graphic representations of distance and velocity. Journal of research in Science Teaching, 24(4), 385-395
  15. Brasell, H. M. (1990), Graphs, Graphing, and Graphers. In M. B. Rowe(Ed.), What Research Says to the Science Teacher, 6, 69-85. Washington, D.C: National Science Teachers Association
  16. Brasell, H. M., & Rowe, M. B. (1993), Graphing skills among high school physics students. School Science and Mathematics, 93(2), 63-70
  17. Fisher, M. A. (1992). Categorization, or schema selection in graph comprehension. A Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA
  18. Kim, T., & Kim, B. (2005). Analysis of interpretation processes through readers' thinking aloud in science-related line graphs. Journal of Korean Association of Science Education, 25(2)
  19. Kim, T., & Beichner, R. J. (2005). Cognitive processes in interpretation of kinematics graphs. Paper presented at the American Association of Physics Teachers (130th)
  20. Kim, Tae Sun & Kim, Beom-Ki, (2002). Fosirg students cognitive processes for the line graph. An oral presented at the American Association of Physics Teachers(125th)
  21. Kim, Tae Sun & Kim, Beom-Ki. (2005). Number and type of spontaneous sentences as high-scool students interpret line graphs representing physics information. Journal of the Korean Physical Societym 47(6)
  22. Kim, Tae Sun & Kim, Beom-Ki, (2002). Secondary students cognitive processes for the line graph from graph components. Paper presented at the Physics Education Research of American Association of Physics Teachers(125th)
  23. Kim, Tae Sun, Kim, Eun-Mi, & Kim, Beam-Ki. (2002). Students' reading order and viewing time in the line graph. Proceedings of selected research papers presented at the International Conference on Physics Education in Cultural Contexts
  24. Kim, Tae Sun, Jina, & Kim, Beom-Ki. (2005). Interpretation abilities of american and korean students in kinematics graphs. Journal of Korean Association of Science Education, 25(6). 671-677
  25. Linn, M. C., & Layman, J. W. (1987). Cognitive consequences of microcomputer-based laboratories: Graphing skills development. Comtemporary Educational Psychology 12, 244-253
  26. Lohse, G. L. (1993). A cogrutive model for understanding graphical perception, Human - Computer Interaction 8, 353-388
  27. McDermott, L. C, & van Zee, E. H. (1987). Investigation of student difficulties with graphical representations in physics. Paper presented at the Second International Seminar in Misconceptions and Educational Strategies in Science and Mathematics, Ithaca, NY
  28. McKenzie, D. L., & Padilla, M. J. (1986). The construction and validation of the test of graphing in science (TOGS). Journal of Research in Science Teaching, 23, 571- 580
  29. Mokros, J. R, & Tinker, R. F. (1987). The impact of microcomputer - based labs on children's ability to interpret graphs. Journal of Research in Science Teaching, 24(4), 369-383
  30. Pinker, S. (1983). Pattern Perception and the Comprehension of Graphs, National Institute of Education Rept. 1-46
  31. Pinker, S. (1991). Rules of language. Science, 253, 530-535
  32. Roth, W.-M., Bowen, G. M, & McGinn, M. K. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36(9), 977-1019
  33. Roth, W.-M., & Bowen, G. M. (1999b). Digitising lizards or the topology of vision in ecological fieldwork. Social Studies of Science, 29
  34. Schnotz, W., & Kulhary, R. W. (1994) Comprehension of Graphics. North-Holland Elsevier Science B. V. The Netherlands
  35. Schultz, K., Clement, J., & Mokros, J. (1986). Adolescents' graphing skills: A descriptive analysis. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA
  36. Shah, P. (1995). Cognitive processes in graph comprehension, Doctoral dissertation, Carnegie - mellon university (UMI Dissertation services NO. 9622441)
  37. Shaw, E. L., Padilla, M. J., & McKenzie, D. L. (1983). An examination of the graphing abilities of students in grades seven through twelve. Paper presented at the meeting of the National Association for Research in Science Teaching, Dallas
  38. Wavering, M. J. (1989). Logical reasoning necessary to make line graphs. Journal of Research in Science Teaching, 26(5), 373-379