다중 표상 학습에 적용한 그리기와 쓰기에서 시각정 정보의 형태에 따른 교수 효과

The Instructional Effect of Varying Visuals in Drawing and Writing Applied to Learning with Multiple Representations

  • 발행 : 2006.06.30

초록

이 연구에서는 물질의 입자성에 대한 개념 학습에 제공되는 다양한 외적 표상들 간의 연계와 통합을 촉진시키는 방안으로 고안된 그리기와 쓰기에서, 학생들에게 제공되는 시각적 정보의 형태(정화상/동화상)에 따른 교수 효과를 조사하였다. 남녀공학 중학교 1학년 233명을 통제 집단, 정적 그리기(SD) 집단, 동적 그리기 (DD) 집단, 정적 쓰기(SW) 집단, 동적 쓰기(DW) 집단으로 배치한 후, '보일의 법칙'과 '샤를의 법칙'에 대하여 2차시 동안 수업을 실시하였다. 개념이해도 검사 점수에 대한 이원 공변량 분석 결과, 그리기(SD, DO) 집단과 쓰기(SW,DW) 집단의 점수가 통제 집단의 점수보다 통계적으로 유의미한 차이로 높았다. 사각적 정보의 형태(정화상/동화상)에 따른 교수 효과를 비교한 결과, 쓰기에서는 정화상보다 동화상을 제공하였을 때 공간 시각화 능력이 낮은 학생들의 개념 이해도 검사 점수가 더 높았으며, 그 차이가 통계적으로 유의미하였다. 반면, 그리기에서는 공간시각화 능력에 관계없이 시각적 정보의 형태에 따른 개념 이해도 검사 점수 차이가 유의미하지 않았다. 수업에 대한 인식 검사 결과에서는 동화상을 사용하는 집단(DD, DW) 학생들의 대부분이 그리기나 쓰기에서 동화상을 제공하는 것에 대해 긍정적으로 인식하는 것으로 나타났다.

This study investigated the effects of varying visuals in drawing and writing as methods to assist students in connecting and integrating multiple external representations provided in learning the particulate nature of matter. Seventh graders (N=233) at a coed middle school were assigned to control, static drawing (SO), dynamic drawing (DD), static writing (SW), and dynamic writing (DW) groups. The students were taught about "Boyle's Law" and "Charles's Law" for two class periods. Two-way ANCOVA results revealed that the scores of a conception test for the two drawing (SD, DD) groups and the two writing (SW, DW) groups were significantly higher than those for the control group. Within the writing groups, students of lower spatial visualization ability in the DW group scored significantly higher than those in the SW group. However, no significant differences were found in the scores of the conception test for the two drawing (SD, DD) groups regardless of students' visualization ability. Researchers also found that most students in both DD and DW groups had respectively positive perceptions of dynamic visuals in drawing or writing.

키워드

참고문헌

  1. 강훈식, 김보경, 노태희 (2005). 물질의 입자적 성질에 대한 다중 표상 학습에서 외적 표상들 간의 연계와 통합을 촉진시키는 방안으로서의 그리가와 쓰기. 한국과학교육학회지, 25(4), 533-540
  2. 유승아, 구인선, 김봉곤, 강대호 (1999). 기체의 성질에 대한 중, 고등학생들의 오개념에 관한 연구. 대한화학회지, 43(5), 564-577
  3. 이수경 (1998). 애니메이션과 인지양식이 과학적 이해와 파지에 미치는 영향. 교육공학연구, 14(2), 69-102
  4. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152
  5. Ainsworth, S. E, Bibby, P. A, & Wood, D. J. (1998). Analysing the costs and benefits of multi-representational learning environments. In M. W. van Someren, P., Reimann, H. P. A. Boshuizen., & T. de Jong (Eds.). Learning with Multiple Representations (pp. 120-134). Oxford: Elsevier
  6. Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337
  7. Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269-1298
  8. Carter, P. A, Halland, S. M, Mladic, S. I., Sarbiewski, G. M., & Sebastian, D. M (1998). Improving student writing skills using wordless picture books. Action Research Project, Saint Xavier University and IRI/Skylight (ERIC Document Reproduction Service No. ED 423525)
  9. Edens, K. M, & Potter, E. F. (2003). Using descriptive drawings as a conceptual change strategy in elementary science. School Science and Mathematics, 103(3), 135-144
  10. Guay, R, McDaniel, E., & Angelo, S. (1978). Analytical factor confounding spatial ability measurement. Paper presented at the meeting of the American Psychological Association, Toronto, Ontario, Canada
  11. Kester, L., Kirschner, P. A, & van Merrienboer, J. J. G. (2004). Information presentation and troubleshooting in electrical circuits. International Journal of Science Education, 26(2), 239-256
  12. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research on Science Teaching, 34(9), 949-968
  13. Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13(2), 177-189
  14. Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13(2), 247-262
  15. Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press
  16. Noh, T, & Scharmann, L. C. (1997). Instructional influence of a molecular-level pictorial presentation of matter on students' conceptions and problem-solving ability. Journal of Research in Science Teaching, 34(2), 199-217
  17. Paivio, A (1986). Mental representation: A dual coding approach. New York: Oxford University Press
  18. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227-237
  19. Singer, J. E., Wu, H-K., & Tal, R. (2003). Students' understanding of the particulate nature of matter. School Science and Mathematics, 103(1), 28-44
  20. van Merrienboer, J. J. G., Schuurman, J. G, De Croock, M B. M, & Paas, F. G. W. C. (2002). Redirecting learners' attention during training: Effects on cognitive load, transfer test performance and training efficiency. Learning and Iastruction, 12(1), 11-37
  21. van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285-325
  22. Wu, H-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465-492