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INTEGRAL GEOMETRY 
ON PRODUCT OF SPHERES II

Hong Jae Kang

1. Introduction and Result

Let G be a Lie group and H a closed subgroup of G. We assume that 

G has a left invariant Riemannian metric that is also right invariant 

under elements of H. Then G/H is a homogeneous space with an 

invariant Riemannian metric. Consider now two submanifolds M and 

N of G/H, one fixed and the other moving under the action of g E G. 

We always assume that M and N are in generic positions. This means 

that the dimension of the intersection MCgN is nonnegative for almost 

all g E G. Let vol(M AgN) be an integral invariant of the submanifold 

M A gN. One of the basic problems in integral geometry is to find 

explicit formulas for integral of vol(MAgN) over G with respect to the 

invariant measure d^G(g) on G in terms of known integral invariants 

of M and N. Especially R. Howard [1] obtained a generalized Poincare 

formula for Riemannian homogeneous spaces as follows:

Let M and N be submanifolds of G/H with dim M + dim N = 

dim(G/H). Assume that G is unimodular. Then

(1.1) /「(M A gN) dg = IL了牛(끄M,〔까N) d^MxN(x,y), 

where 此X) denotes the number of elements in a set X and aH (T^M, TjN) 

is defined by (2.1) in Section 2.
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The formula (1.1) holds under the general situation. However, it is 

difficult to give an explicit description through the concrete computa
tion of aH(T^M, TjN), and only a little is known about it. In this 

paper, we attempt to explicitly describe this formula for two dimen

sional submanifolds in the product of unit sphere S2. More precisely,

Theorem 1.1. Let M and N be submanifolds of S2、乂、S2 of di

mension 2. Assume that for almost all g E G, M and gN intersect 

transversely. For any point x E M and y E N, &x and ny denote the 

unit vector of TXM and TyN, respectively. Then we have

/ tt(MCgN)(也so⑶xso⑶(g) = "叩 M 乂 N (x, y)-
丿SO(3)xSO(3) 丿 JMxN

Here o(& n) was introduced by the Gauss hypergeometric function in 

the Section 3.

2. Preliminaries

Here we shall review the generalized Poincare formula on Riemann- 

ian homogeneous spaces given by R. Howard [1] and recall the Gauss 

hypergeometric function and the elliptic integrals.

Let E be a finite dimensional real vector space with an inner prod

uct, and let V and W be two vector subspaces of E with orthonormal 

bases vi,-- -,vp and w1,---,Wq respectively. The angle between sub

spaces V and W is defined by

a(V, W) = ||vi A---A Vp A Wi A---A Wq|| , 

where
||xi A-- - A Xk||2 = |det [〈x《A Xj 川.

This definition is independent of the choice of orthonormal bases. It 

is obvious that if p + q = dim E then

a(V, W) = a(V丄，W丄).

Let G be a Lie group and H a closed subgroup of G. We assume 

that G has a left invariant Riemannian metric that is also invariant 

under the right actions of elements of H. This metric induces a G

invariant Riemannian metric on G/H. We denote by o the origin of 



Integral geometry on product of spheres II 225

G/H. If x,y e G/H and V is a vector subspace of Tx(G/H) and W 

is a vector subspace of Ty(G/H) then define aH (V, W) by

(2.D bH (V, W) = / b((d德-1 V, dh-1(dgy )-1W) Mh (h)
H

where gx and gy are elements of G such that gxo = x and gyo = y. 

This definition is independent of the choice of gx and gy in G such 

that gxO = x and gyo = y.

We list here the basic properties of the Gauss hypergeometric func

tion that are needed in this paper only. For further details see [4].

The Gauss hypergeometric series, convergent for |z| < 1, is given 

by the power series

(2.2)
b 1 x ▽ r(a +n) 
F (a,b,c; z)=摭卞厂

r(b + n) r(c) zn

r(b) r(c + n) n!

where r is the gamma function. By analytic continuation F(a, b, c; z) 

can be extended to define a function analytic and single-valued in the 

complex z plane cut along the positive real axis from 1 to oo. We 

remark that above series reduces to a polynomial of degree n in x 

when a or b is equal to —n, (n = 0,1,2, ..•). The series (2.2) is not 

defined when c is equal to —m, (m = 0,1,2, • • •), provided a or b is 

not a negative integer n with n < m. The hypergeometric equation

abu = 0

has the solution u = F(a, b, c; z).

The six functions F(a士 1, b, c; z), F(a, b士 1, c; z) and F(a, b, c士 

1; z) are called contiguous to F(a, b, c; z). Relations between F(a, b, c; z) 

and any two contiguous functions have been given by Gauss. By re

peated application of these relations the function F(a + m, b + n, c + 

l; z) with integer m, n, l can be expressed as a linear combination 

of F(a, b, c; z) and one of its contiguous functions with coefficients 

which are rational functions of a, b, c, z . For examples,

azF(a + 1, b +1, c + 1; z) = c [F(a, b +1, c; z) — F(a, b, c; z)],

(c — 1)F(a, b, c — 1; z) = (c — a — 1)F(a, b, c; z) + aF(a + 1, b, c; z).
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Among the special cases are

(2.3) (1 — z)t = F(—t, b, b; z),

arcsinz = zF 仕,丄 § ; z2 
k 2, 2, 2 '

(2.4)

(2.5)

Furthermore C. F. Gauss evaluated, for 况(c — a — b) > 0, 

f( b n — r(c)r(c — a —b) 
F(a, b, c, ])= r(c - a)r(c - b).

In this paper, we may consider only when z is a real number.

We now recall that the incomplete elliptic integrals of the first and 

second kind are defined by, for 0 < k < 1,

广帅 1 广帅 .____________
F(仅 k)= / / : d们 E(仅 k)= / 시' — k2 sin2 ddd,

Jo 시' — k2 sin2 0 Jo

respectively. If 明=n/2 then the integrals are called the complete 

elliptic integral of the first and second kind, and are denoted by K(k) 

and E(k) or simply K and E respectively.

3. Proof of the Theorem 1.1

Let S2 be the standard sphere of dimension 2. Throughout this 

section, to simplify notation, we will regard G and H as SO(3) x 
SO(3) and SO(2) x SO(2). The special orthogonal group SO(3) acts 

transitively on S2. The isotropy subgroup of SO(3) at a point in S2 is 

SO(2). Thus S2 x S2 can be realized as a homogeneous space G/H. 

Let so(3) x so (3) be the Lie algebra of G. Define an inner product on 
so(3) x so(3) by

〈X, Y〉= — 1 Trace(XY) (X, Y E so(3) x so(3)).

We extend this inner product〈.，.)on so(3) xso(3) to the left invariant 

Riemannian metric on G. Then we obtain a bi-invariant Riemannian 

metric on G. This bi-invariant Riemannian metric on G induces a 

G-invariant Riemannian metric on G/H.
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Let M and N be submanifolds of S2 x S2 of dimension 2. By the 

formula (1.1), we have

(3.1) / tt(M H gN)如G(g) = jL ^h(TXM, TyN) d^MxM(x，饥.

For any point x = (Xi,X2)6 M,

TxM = T(xi,x2)M C %S2 ㊉ TX2S2.

Thus Ux can be realized as an unit vector of TXM just as follows:

Ux = (ui,U2)6 Tx1 S2 ㊉ Tx2S2 = R2 x R2 으 R4.

We here can transport Ux to (cosS, 0, sin01, 0), since the action of 

H preserves the length of vectors. Thus we can take

(cos 01, 0, sin 01, 0) , (— sin 01 cos 02, sin 02 cos 03, cos 01 cos 02, sin 02 sin 但)

as an orthonormal basis of Tx M. Similarly we have

(cos Ti, 0, sin Ti, 0) , (— sin Ti cos r, sin T2 cos T3, cos Ti cos r, sin T2 sin 73)

as an orthonormal basis of Ty N.

In this choice of orthonormal bases, we can easily take one. But it is 

too much variables to calculate the ^丑(・,•).

Now let Gr；(R4) be an oriented Grassmann manifold as a subman

ifold of /\2R4. We take an orientation on R4 such that ei, e2, 03, 04 

is a positive basis of R4 and the inner product on 2 R4 induced by 

that on R4. Let * be the Hodge star operator on /\2 R4. Put

/\ = {& 6 卜 r4i* e = } /\ = {< 6 卜 r4i* < = —{.

Then we have an orthogonal direct sum decomposition

A R4 = K ® K.

2 + -
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We define orthonormal bases A《and B《of 八+ and 八-by

B1 =―氐(e1 A e2 - e3 A e4), 
c '仁 、

B2 = ~f^ (e1 A e3 + e2 A e4), 
D ..、 

B3 =—氐(e1 A e4 - e2 A e3)- 
2

， 1 —，人、
A1 = 一六(ei A e2 + e3 A 64), 
, '仁 、 

A2 =―砍(e1 A e3 - e2 A e4), 
，f.................................................

A3 =—氐(e1 A e4 + e2 A e3), 
v2

Then we obtain

2

!\ = Span{Ai, A2, A3}, 

+

By a simple calculation, we have

Gr°(R4) = S2 x S2

Hence we can easily take orthonormal bases g and n as follows:

01A1 + sin。1厶2) + &2 Bi + sin 62B2),

n = —'(cos T1A1 + sin T1A2) + —=(cos T2B1 + sin T2B2),

V 2 V 2

where 0 < 6\, 62,「1, T2 < n. We can simply write

bH(TxM, TyN) = aH(& n),

since oh(TxM, TyN) is dependent only on g and n, that is, 6 and t.

Now we work on the following integral

oh(g, n)= lg A knl 如h(h)-
H

We have set, to simplify notation,

cos 6i cos Ti = cn, sin 6《sin「1 = sa, (i = 1, 2).

Then we immediately obtain

|g A hnl = 2 |cn + sn cos (a + B) — C22 — S22 cos (a — B) | ,
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since

hn =

+

for

(cos Ti Ai + sin ti cos (a + f3) A2 + sin ti sin (a + f3)3)

(cos T2B1 + sin T2 cos (a — B) B2 + sin T2 sin (a — B) B3)

cos a — sin a 0 0

sin a cos a 0 0
h =

0 0 cos B — sin B

0 0 sin B cos B

e SO(2) x SO(2).

Hence we have to evaluate the following integral.

nn 1

2 I C11 + S11 cos (a + B)

—C22 — S22 cos (a — B) I da dB, 

namely,

1

2

n

| c11 — c22 + (s11 ― S22) cos a cos B

(sn + S22) sin a sin B | da dB.

Since 0 < 8\, 82, " T2 < n, we have 0 < S11, S22 M 1 and —1 < 
C11, C22 < 1. And put a = S11 + S22, b = S11 — S22, c = C11 — C22 then

0 < a < 2, —1 < b < 1, —2 < c < 2, |a| > |b|.

Having set up these notations, we can now give lemma that is needed 

to calculate our result.

Lemma 3.1. Let 이(r) be a cir시e with radius r. If |a| < 1 then

|ra + X1| d卩$心)(幻=4r2 (aarcsina + a/1 — a2
Js1(r) '

We can easily show this lemma and omit its proof.

At first, we shall prove the case where c = 0.
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In this case, we will assume that a = 0. Then we have b = 0 since 

S11 = S22 = 0. Therefore we have

°h (& n) = 0.

We suppose that a > 0. Then we have

1 广2n 广2n ____________________________
Oh (£, n) = 分 / Vb2 cos2 a + a2 sin2 a cos 8 d^ da

2n
=2 / V b2 cos2 a + a2 sin2 a da

Jo

= 8a/ \/1 - k2 sin2 a da (put k := J1 — (b/a)2

=8aE(k).

n

Now we shall prove the case where c = 0.

Case I. The case where 0 < |b| < a < |c|.

In this case, we shall compute the following:

1
oh(£, n) = m |c + b cos a cos 8 — a sin a sin /이 d0da

1 
=—

2
c — V a2 sin2 a + b2 cos2 a sin(8 + ©) d8 da.

2 c2 — b2 2 2
Here if a = |이 then we have sin2 a < —----- ---, since c2 > a2. Hence

___________________ a2 — b2
we have |c| > a/a2 sin2 a + b2 cos2 a, for all a e [0, 2찌. Therefore we 

obtain

(3.2)
r 2n 广2n

/ |c| d8 = 2찌c|.

o

c — V a2 sin2 a + b2 cos2 a sin(8 + ©) d8 =

(3.3)

Jo J

If a = |b| then we have

f2n
/ |c — a sin(8 + ©)| d/8 = 2찌c|.

o

In this case, from (3.2) and (3.3), we immediately obtain

oh(<, n) = 2 / 2찌이 da = 2n2|c|.
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Case II. The case where 0 < |c| < \b\ < a.

If a = |이 then, by Lemma 3.1, we have

Oh (& n)

(3.4)

1

2
| c — a sin(0 + ©) | d° da

4ncarcsin (C) + 4n시a 一 c2.

da

Here if a = | 이 then we have sin2 a 

we have |c| < 시a2 sin2 a + b2 cos2 a, 

Lemma 3.1, we get

c2 — b2 2 2
> ————,since c2 < a2. Hence 

a2 — b2

for all a e [0, 2찌. Therefore, by

f 2n ___________________
(3.5W c — Va2 sin2 a + b2 cos2 a sin(0 + ©) d0

Jo

= 4c arcsin ( “ -- ) + 4、]a2 sin2 a + b2 cos2 a — c2.

a2 sin2 a + b2 cos2 a

Let us integrate on [0, 2찌 both term of (3.5). The integral of the 

second part of the right-hand side of (3.5) gives

2n ________________________________
a2 sin2 a + b2 cos2 a — c2 da

(3.6)

Now we compute the first part of the right-hand side of (3.5). To 

do this, we prepare the following lemma and formulas (3.7) and (3.8).

Lemma 3.2. For integer m, we have

/sin2mxdx = — cosxF (|, | — m, ：; cos2x
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We can easily show the above lemma, using the binomial theorem, 

the details are left to the reader.

From Lemma 3.2, it is obvious that

「〃 sin2mxdx = (尹 -P!! . n.

o (2m)!! 2
(3.7)

(2m)!!

where

n _ J m(m — 2) •…4 • 2, m : even;
m— [ m(m — 2) ••• 3 • 1, m : odd.

And, by a simple calculation and the binomial theorem, we obtain the 

following equality:

。.幻(1 + k2 sin2 x 2"+1 =宁(2n + 2m — 1)!! ( —k2)m sin2m x 
= 스 (2m)!!(2n — 1)!! (- ) .

From the Taylor expansion of arcsin f (x) and (3.8), (3.7), we have

arcsin ( C -- ) da

Jo '、、시a sin2 a + b2 cos2 a/

= 宁 (2n — 1)!! 1 /2n c2n+1

n=o (2n)!! 2n +1 Jo

—宁(& — 1)!! c2n+1 1 1 \
£畠 (2n)!! 2n + 1 |이2n+1 1 + k2 sin2 a/

= 元 元 (2n — 1)!!(站 + 2m — 1)!! 2"+1 ( —k2)m /2" sin2m @ 站
=£= J 伽)!!伽 +1)(2m)!!(2n — 1)!! ( ) 丿。

= 孑 孑 (2n — 1)!!(2n + 2m — 1)!! /으) 2n+1 / k2)m (2m ― 1)!! 2n
스 n=。(2n)!!(2n+1)(2m)!!(2n ―1)!! u 이丿 (2m)!!
宁(2n — 1)!! 1 2n+1 宁 2/nr (m + 2) r (n + m + §) (—k2)m

丄(2n)!! 2n +1 2 m!r & + 2)

=2n 元睥—明 1 性丫"1 F (1 n +丄 1； —k^
= 丄 (2n)!! 2n +1( | 이丿 【2, +2, ； ,

c

1

a2 sin2 a + b2 cos2 a /

2n+1 

da

2n+1

da

m!
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where the step going from the second to third line used putting k2 

(a2 — b2)/b2, and the fifth to sixth line used

2p+m / 1、

丰「n + m+2 -
(2n + 2m — 1)!!

Summarizing, we obtain

“ ’ f (2n — 1)!! 1 / c、2n+1
°h (& n) = 4nc〉2 而

n=o (2n)!! 2n+1k I이丿 

妃"!,n + 1' 1； 늑A) 

+ …E (")

Remark 3.3. It is trivial that the case where a = |이 in just above 

equality goes to (3.4).

Case III. The case where 0 < |b| < |c| < a. 

In particular, if 0 < |이 = |c| = a then we have

1 n
oh (& n) = 2 |c — a sin(0 + ©)| d^da.

Since Ic/aI = 1, we obtain

1 r2n
oh(£, n) = § 2찌c| da = 2n2|c| = 2n2a.

2 j0
It is sufficient to calculate the following:

1 n ■---------------
oh (& n) = 2 c — V a2 sin2 a + b2 cos2 a sin(0 + ©) d0 da,

where the case is |이 < |c| < a or |이 < |c| < a.

c2 — b2
In these cases, we immediately know that 0 < ————< 

a2 — b2 
inequality

1. The

|c| > V a2 sin2 a + b2 cos2 a 
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is satisfied whenever 0 < a < 们 n — 0 < a < n + 6, 2n — 0 < a < 2n, 

where

/ 、 . / c2 — b
(3.9) 0 = arcsin ———.

V a2 — b2

Then we obtain

「2n __________________________
c — Va2 sin2 a + b2 cos2 a sin(0 + ©) 邛 = 2찌c|.

Jo

Therefore we have

(3.10) / 2찌c| da + / 2찌c| da + / 2찌c| da] = 4찌c| 0

2 IJ0 Jn-0 J2n—0 丿

On the other hand, the inequality

|c| < a2 sin2 a + b2 cos2 a

holds for 0 < a < n — 0, n + 0 < a < 2n — 0. Then, by Lemma 3.1, 

we have

2n
(3.11)/  c — Va2 sin2 a + b2 cos2 a sin(0 + ©) d°

0

= 4c arcsin ( C -- ) + 4\/a2 sin2 a + b2 cos2 a — c2.

a2 sin2 a + b2 cos2 a

We first integrate the second part of right-hand side of (3.11) on [0, n —
0]. Then we have

广 n—0 _________________________
a2 sin2 a + b2 cos2 a — c2 da 

Je

= / (a2 — b2) sin2 a — (c2 — b2) da.

e

Here we put (a2 — b2) sin2 a — (c2 — b2) = (a2 — c2) sin2 明. Then, 

using the coordinate transformation, above integral is as follows:

, . / 2 2、 [히/ 1 — cos2 p . .

(3.12) 2(a — c) / 2 2\ . 2 / 丄 / 2 K2\ 삐).
Jo 시(a2 — c2) sin2 p + (c2 — b2)
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From

/피/_____________些_____________

丿0 (? — c2) sin2 明 + (c2 — b2)

1 /피/ 如

y/a2 — b2 Jo 、/\ 一 sin2 6 cos2 明

姦느帀 K (sin 6),

and, using putting cos 明=t,

cos2明d明

(a — c2) sin2 明 + (c2 — b2)

{E (sin 6) — K (sin6)},

we know that (3.12) becomes the following:

尸匸----- -( c2 — b2
(3.13) 2a2 — b2 { E (sin 6)--- --- - K (sin 6)

a2 — b2

Next we compute the first part of right-hand side of (3.11) on [6, n — 6]. 

Since

(3.14)
rn~3 /1 1 3 \
/ sin2m a da = 2 cos 6^(-^ — m/ ; cos2 6丿,
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we have

c
广n-0

arcsin ( --  ) da
Je '、、시a sin2 a + b2 cos2 a/

宁宁 (2n - 1)!!(2n + 2m - 1)!! / c )2n+1 ,

m二上(&)!!(站+1)(2湖!!(站-1)!! u이丿 ‘

广n—e
乂 sin2m a da

e

2cos 8 文牛二3 丄 G I2" 

n=o (2n)!! 2n+1U이丿

X 寸(2n + 2m - 1)!! (-k)m F (1 1 _ m 们 cos2 n
스 (2m)!!(2n - 1)!! ( 幻 F 板, 2 m, 2; 8丿.

Summarizing, we obtain

_______ f c2 _ b2 )
aH(& n) = 4찌c|8 + Wa2 - b2 \ E(sin 8) ——-——— K(sin 8) > 

[ a2 — b2 J

寿(2n - 1)!! 1 ( c、2n+1
+ 8c cos 8) 一；———------- I 7-7 )

n=o (2n)!! 2n+1U이丿

X V (2n + 2m - 1)!! (-k)m F ( 1 1 _ m 丄 cos2 8) 
스 (2m)!!(2n - 1)!! ( 幻 F[2, 2 m, 2; 8丿.

These equalities bring the proof to a conclusion.

Last of all we here give our result in the following table:
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where 0 := arcsin \긔2

V a2 — b2

a, b, c Oh (& n)

0 < |b| < a < |c| 2n2|c|

0 < |c| < |b| < a
宁(2n — 1)!! 1 / c \2ra+1

nc 丄(2n)!! 2n + 1[|b| 丿

xF (2 ,n + 1,1; 으규矽)

+ 4財2 - c2E (Ja - c2)

0 < |이 = |c| = a 2n2|c|

0 < |b| < |c| < a

(a = |b|)

4찌c|0 + 4”a2 — b2 !E(sin 0) — 三——'二 K(sin 0)) 

a2 — b2

+ 8ccos0文牛二耕丄住I2" 

n=o (2n)!! 2n+1 니이丿

(2n + 2m — 1)!! f Em 

스 (2m)!!(2n — 1)!! ( )

x F (2, 2 — m, 2 ; cos2 0)
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