INTEGRAL GEOMETRY ON PRODUCT OF SPHERES II

Hong Jae Kang

1. Introduction and Result

Let G be a Lie group and H a closed subgroup of G. We assume that G has a left invariant Riemannian metric that is also right invariant under elements of H. Then G / H is a homogeneous space with an invariant Riemannian metric. Consider now two submanifolds M and N of G / H, one fixed and the other moving under the action of $g \in G$. We always assume that M and N are in generic positions. This means that the dimension of the intersection $M \cap g N$ is nonnegative for almost all $g \in G$. Let $\operatorname{vol}(M \cap g N)$ be an integral invariant of the submanifold $M \cap g N$. One of the basic problems in integral geometry is to find explicit formulas for integral of $\operatorname{vol}(M \cap g N)$ over G with respect to the invariant measure $d \mu_{G}(g)$ on G in terms of known integral invariants of M and N. Especially R. Howard [1] obtained a generalized Poincaré formula for Riemannian homogeneous spaces as follows:

Let M and N be submanifolds of G / H with $\operatorname{dim} M+\operatorname{dim} N=$ $\operatorname{dim}(G / H)$. Assume that G is unimodular. Then
(1.1) $\int_{G} \sharp(M \cap g N) d \mu_{G}(g)=\iint_{M \times N} \sigma_{H}\left(T_{x}^{\perp} M, T_{y}^{\perp} N\right) d \mu_{M \times N}(x, y)$, where $\sharp(X)$ denotes the number of elements in a set X and $\sigma_{H}\left(T_{x}^{\perp} M, T_{y}^{\perp} N\right)$ is defined by (2.1) in Section 2.

Key words and phrases: Integral geometry, Poincaré formula, Gauss hypergeometric function.

The formula (1.1) holds under the general situation. However, it is difficult to give an explicit description through the concrete computation of $\sigma_{H}\left(T_{x}^{\perp} M, T_{y}^{\perp} N\right)$, and only a little is known about it. In this paper, we attempt to explicitly describe this formula for two dimensional submanifolds in the product of unit sphere S^{2}. More precisely,

Theorem 1.1. Let M and N be submanifolds of $S^{2} \times S^{2}$ of dimension 2. Assume that for almost all $g \in G, M$ and $g N$ intersect transversely. For any point $x \in M$ and $y \in N, \xi_{x}$ and η_{y} denote the unit vector of $T_{x} M$ and $T_{y} N$, respectively. Then we have
$\int_{S O(3) \times S O(3)} \sharp(M \cap g N) d \mu_{S O(3) \times S O(3)}(g)=\iint_{M \times N} \sigma(\xi, \eta) d \mu_{M \times N}(x, y)$.
Here $\sigma(\xi, \eta)$ was introduced by the Gauss hypergeometric function in the Section 3.

2. Preliminaries

Here we shall review the generalized Poincaré formula on Riemannian homogeneous spaces given by R. Howard [1] and recall the Gauss hypergeometric function and the elliptic integrals.

Let E be a finite dimensional real vector space with an inner product, and let V and W be two vector subspaces of E with orthonormal bases v_{1}, \ldots, v_{p} and w_{1}, \ldots, w_{q} respectively. The angle between subspaces V and W is defined by

$$
\sigma(V, W)=\left\|v_{1} \wedge \cdots \wedge v_{p} \wedge w_{1} \wedge \cdots \wedge w_{q}\right\|,
$$

where

$$
\left\|x_{1} \wedge \cdots \wedge x_{k}\right\|^{2}=\left|\operatorname{det}\left[\left\langle x_{i} \wedge x_{j}\right\rangle\right]\right| .
$$

This definition is independent of the choice of orthonormal bases. It is obvious that if $p+q=\operatorname{dim} E$ then

$$
\sigma(V, W)=\sigma\left(V^{\perp}, W^{\perp}\right)
$$

Let G be a Lie group and H a closed subgroup of G. We assume that G has a left invariant Riemannian metric that is also invariant under the right actions of elements of H. This metric induces a G invariant Riemannian metric on G / H. We denote by o the origin of
G / H. If $x, y \in G / H$ and V is a vector subspace of $T_{x}(G / H)$ and W is a vector subspace of $T_{y}(G / H)$ then define $\sigma_{H}(V, W)$ by

$$
\begin{equation*}
\sigma_{H}(V, W)=\int_{H} \sigma\left(\left(d g_{x}\right)_{o}^{-1} V, d h_{o}^{-1}\left(d g_{y}\right)_{o}^{-1} W\right) d \mu_{H}(h) \tag{2.1}
\end{equation*}
$$

where g_{x} and g_{y} are elements of G such that $g_{x} o=x$ and $g_{y} o=y$. This definition is independent of the choice of g_{x} and g_{y} in G such that $g_{x} o=x$ and $g_{y} o=y$.

We list here the basic properties of the Gauss hypergeometric function that are needed in this paper only. For further details see [4].

The Gauss hypergeometric series, convergent for $|z|<1$, is given by the power series

$$
\begin{equation*}
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(a)} \cdot \frac{\Gamma(b+n)}{\Gamma(b)} \cdot \frac{\Gamma(c)}{\Gamma(c+n)} \cdot \frac{z^{n}}{n!}, \tag{2.2}
\end{equation*}
$$

where Γ is the gamma function. By analytic continuation $F(a, b, c ; z)$ can be extended to define a function analytic and single-valued in the complex z plane cut along the positive real axis from 1 to ∞. We remark that above series reduces to a polynomial of degree n in x when a or b is equal to $-n,(n=0,1,2, \cdots)$. The series (2.2) is not defined when c is equal to $-m,(m=0,1,2, \cdots)$, provided a or b is not a negative integer n with $n<m$. The hypergeometric equation

$$
z(1-z) \frac{d^{2} u}{d z^{2}}+(c-(a+b+1) z) \frac{d u}{d z}-a b u=0
$$

has the solution $u=F(a, b, c ; z)$.
The six functions $F(a \pm 1, b, c ; z), F(a, b \pm 1, c ; z)$ and $F(a, b, c \pm$ $1 ; z)$ are called contiguous to $F(a, b, c ; z)$. Relations between $F(a, b, c ; z)$ and any two contiguous functions have been given by Gauss. By repeated application of these relations the function $F(a+m, b+n, c+$ $l ; z$) with integer m, n, l can be expressed as a linear combination of $F(a, b, c ; z)$ and one of its contiguous functions with coefficients which are rational functions of a, b, c, z. For examples,

$$
\begin{aligned}
a z F(a+1, b+1, c+1 ; z) & =c[F(a, b+1, c ; z)-F(a, b, c ; z)], \\
(c-1) F(a, b, c-1 ; z) & =(c-a-1) F(a, b, c ; z)+a F(a+1, b, c ; z) .
\end{aligned}
$$

Among the special cases are

$$
\begin{align*}
(1-z)^{t} & =F(-t, b, b ; z), \tag{2.3}\\
\arcsin z & =z F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; z^{2}\right) . \tag{2.4}
\end{align*}
$$

Furthermore C. F. Gauss evaluated, for $\Re(c-a-b)>0$,

$$
\begin{equation*}
F(a, b, c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \tag{2.5}
\end{equation*}
$$

In this paper, we may consider only when z is a real number.
We now recall that the incomplete elliptic integrals of the first and second kind are defined by, for $0<k<1$,
$F(\psi, k)=\int_{0}^{\psi} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta, \quad E(\psi, k)=\int_{0}^{\psi} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta$,
respectively. If $\psi=\pi / 2$ then the integrals are called the complete elliptic integral of the first and second kind, and are denoted by $K(k)$ and $E(k)$ or simply K and E respectively.

3. Proof of the Theorem 1.1

Let S^{2} be the standard sphere of dimension 2. Throughout this section, to simplify notation, we will regard G and H as $S O(3) \times$ $S O(3)$ and $S O(2) \times S O(2)$. The special orthogonal group $S O(3)$ acts transitively on S^{2}. The isotropy subgroup of $S O(3)$ at a point in S^{2} is $S O(2)$. Thus $S^{2} \times S^{2}$ can be realized as a homogeneous space G / H. Let $\mathfrak{s o}(3) \times \mathfrak{s o}(3)$ be the Lie algebra of G. Define an inner product on $\mathfrak{s o}(3) \times \mathfrak{s o}(3)$ by

$$
\langle X, Y\rangle=-\frac{1}{2} \operatorname{Trace}(X Y) \quad(X, Y \in \mathfrak{s o}(3) \times \mathfrak{s o}(3))
$$

We extend this inner product $\langle\cdot, \cdot\rangle$ on $\mathfrak{s o (3)} \times \mathfrak{s o}(3)$ to the left invariant Riemannian metric on G. Then we obtain a bi-invariant Riemannian metric on G. This bi-invariant Riemannian metric on G induces a G-invariant Riemannian metric on G / H.

Let M and N be submanifolds of $S^{2} \times S^{2}$ of dimension 2. By the formula (1.1), we have

$$
\begin{equation*}
\int_{G} \sharp(M \cap g N) d \mu_{G}(g)=\iint_{M \times N} \sigma_{H}\left(T_{x} M, T_{y} N\right) d \mu_{M \times M}(x, y) . \tag{3.1}
\end{equation*}
$$

For any point $x=\left(x_{1}, x_{2}\right) \in M$,

$$
T_{x} M=T_{\left(x_{1}, x_{2}\right)} M \subset T_{x_{1}} S^{2} \oplus T_{x_{2}} S^{2}
$$

Thus u_{x} can be realized as an unit vector of $T_{x} M$ just as follows:

$$
u_{x}=\left(u_{1}, u_{2}\right) \in T_{x_{1}} S^{2} \oplus T_{x_{2}} S^{2}=\mathbb{R}^{2} \times \mathbb{R}^{2} \cong \mathbb{R}^{4}
$$

We here can transport u_{x} to $\left(\cos \theta_{1}, 0, \sin \theta_{1}, 0\right)$, since the action of H preserves the length of vectors. Thus we can take

$$
\left(\cos \theta_{1}, 0, \sin \theta_{1}, 0\right),\left(-\sin \theta_{1} \cos \theta_{2}, \sin \theta_{2} \cos \theta_{3}, \cos \theta_{1} \cos \theta_{2}, \sin \theta_{2} \sin \theta_{3}\right)
$$

as an orthonormal basis of $T_{x} M$. Similarly we have
$\left(\cos \tau_{1}, 0, \sin \tau_{1}, 0\right),\left(-\sin \tau_{1} \cos \tau_{2}, \sin \tau_{2} \cos \tau_{3}, \cos \tau_{1} \cos \tau_{2}, \sin \tau_{2} \sin \tau_{3}\right)$
as an orthonormal basis of $T_{y} N$.
In this choice of orthonormal bases, we can easily take one. But it is too much variables to calculate the $\sigma_{H}(\cdot, \cdot)$.

Now let $G r_{2}^{\circ}\left(\mathbb{R}^{4}\right)$ be an oriented Grassmann manifold as a submanifold of $\Lambda_{2} \mathbb{R}^{4}$. We take an orientation on \mathbb{R}^{4} such that $e_{1}, e_{2}, e_{3}, e_{4}$ is a positive basis of \mathbb{R}^{4} and the inner product on $\Lambda_{2} \mathbb{R}^{4}$ induced by that on \mathbb{R}^{4}. Let $*$ be the Hodge star operator on $\Lambda_{2} \mathbb{R}^{4}$. Put

$$
\bigwedge_{+}^{2}=\left\{\xi \in \bigwedge_{2} \mathbb{R}^{4} \mid * \xi=\xi\right\}, \quad \bigwedge_{-}^{2}=\left\{\xi \in \bigwedge_{2} \mathbb{R}^{4} \mid * \xi=-\xi\right\} .
$$

Then we have an orthogonal direct sum decomposition

$$
\bigwedge_{2} \mathbb{R}^{4}=\bigwedge_{+}^{2} \oplus \bigwedge_{-}^{2}
$$

We define orthonormal bases A_{i} and B_{i} of Λ_{+}^{2} and Λ_{-}^{2} by

$$
\begin{array}{ll}
A_{1}=\frac{1}{\sqrt{2}}\left(e_{\mathbf{1}} \wedge \mathrm{e}_{\mathbf{2}}+\mathrm{e}_{\mathbf{3}} \wedge \mathrm{e}_{4}\right), & B_{1}=\frac{1}{\sqrt{2}}\left(\mathrm{e}_{\mathbf{1}} \wedge \mathrm{e}_{\mathbf{2}}-\mathrm{e}_{\mathbf{3}} \wedge \mathrm{e}_{\mathbf{4}}\right), \\
A_{2}=\frac{1}{\sqrt{2}}\left(\mathrm{e}_{\mathbf{1}} \wedge \mathrm{e}_{\mathbf{3}}-\mathrm{e}_{\mathbf{2}} \wedge \mathrm{e}_{\mathbf{4}}\right), & B_{2}=\frac{1}{\sqrt{2}}\left(\mathrm{e}_{\mathbf{1}} \wedge \mathrm{e}_{\mathbf{3}}+\mathrm{e}_{\mathbf{2}} \wedge \mathrm{e}_{\mathbf{4}}\right), \\
A_{3}=\frac{1}{\sqrt{2}}\left(\mathrm{e}_{\mathbf{1}} \wedge \mathrm{e}_{\mathbf{4}}+\mathrm{e}_{2} \wedge \mathrm{e}_{3}\right), & B_{3}=\frac{1}{\sqrt{2}}\left(\mathrm{e}_{1} \wedge \mathrm{e}_{\mathbf{4}}-\mathrm{e}_{2} \wedge \mathrm{e}_{\mathbf{3}}\right) .
\end{array}
$$

Then we obtain

$$
\bigwedge_{+}^{2}=\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}\right\}, \quad \bigwedge_{-}^{2}=\operatorname{Span}\left\{B_{1}, B_{2}, B_{3}\right\} .
$$

By a simple calculation, we have

$$
G r_{2}^{o}\left(\mathbf{R}^{4}\right)=S^{2}\left(\frac{1}{\sqrt{2}}\right) \times S^{2}\left(\frac{1}{\sqrt{2}}\right)
$$

Hence we can easily take orthonormal bases ξ and η as follows:

$$
\begin{aligned}
\xi & =\frac{1}{\sqrt{2}}\left(\cos \theta_{1} A_{1}+\sin \theta_{1} A_{2}\right)+\frac{1}{\sqrt{2}}\left(\cos \theta_{2} B_{1}+\sin \theta_{2} B_{2}\right) \\
\eta & =\frac{1}{\sqrt{2}}\left(\cos \tau_{1} A_{1}+\sin \tau_{1} A_{2}\right)+\frac{1}{\sqrt{2}}\left(\cos \tau_{2} B_{1}+\sin \tau_{2} B_{2}\right)
\end{aligned}
$$

where $0 \leq \theta_{1}, \theta_{2}, \tau_{1}, \tau_{2} \leq \pi$. We can simply write

$$
\sigma_{H}\left(T_{x} M, T_{y} N\right)=\sigma_{H}(\xi, \eta)
$$

since $\sigma_{H}\left(T_{x} M, T_{y} N\right)$ is dependent only on ξ and η, that is, θ and τ.
Now we work on the following integral

$$
\sigma_{H}(\xi, \eta)=\int_{H}|\xi \wedge k \eta| d \mu_{H}(h)
$$

We have set, to simplify notation,

$$
\cos \theta_{i} \cos \tau_{i}=c_{i i}, \quad \sin \theta_{i} \sin \tau_{1}=s_{i i}, \quad(i=1,2)
$$

Then we immediately obtain

$$
|\xi \wedge h \eta|=\frac{1}{2}\left|c_{11}+s_{11} \cos (\alpha+\beta)-c_{22}-s_{22} \cos (\alpha-\beta)\right|
$$

since

$$
\begin{aligned}
h \eta & =\frac{1}{\sqrt{2}}\left(\cos \tau_{1} A_{1}+\sin \tau_{1} \cos (\alpha+\beta) A_{2}+\sin \tau_{1} \sin (\alpha+\beta)_{3}\right) \\
& +\frac{1}{\sqrt{2}}\left(\cos \tau_{2} B_{1}+\sin \tau_{2} \cos (\alpha-\beta) B_{2}+\sin \tau_{2} \sin (\alpha-\beta) B_{3}\right)
\end{aligned}
$$

for

$$
h=\left[\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & \cos \beta & -\sin \beta \\
0 & 0 & \sin \beta & \cos \beta
\end{array}\right] \in S O(2) \times S O(2)
$$

Hence we have to evaluate the following integral.

$$
\begin{aligned}
\sigma_{H}(\xi, \eta)= & \left.\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{1}{2} \right\rvert\, c_{11}+s_{11} \cos (\alpha+\beta) \\
& -c_{22}-s_{22} \cos (\alpha-\beta) \mid d \alpha d \beta
\end{aligned}
$$

namely,

$$
\begin{aligned}
\left.\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \right\rvert\, c_{11}-c_{22}+\left(s_{11}\right. & \left.-s_{22}\right) \cos \alpha \cos \beta \\
& -\left(s_{11}+s_{22}\right) \sin \alpha \sin \beta \mid d \alpha d \beta
\end{aligned}
$$

Since $0 \leq \theta_{1}, \theta_{2}, \tau_{1}, \tau_{2} \leq \pi$, we have $0 \leq s_{11}, s_{22} \leq 1$ and $-1 \leq$ $c_{11}, c_{22} \leq 1$. And put $a=s_{11}+s_{22}, b=s_{11}-s_{22}, c=c_{11}-c_{22}$ then

$$
0 \leq a \leq 2, \quad-1 \leq b \leq 1, \quad-2 \leq c \leq 2, \quad|a| \geq|b|
$$

Having set up these notations, we can now give lemma that is needed to calculate our result.

Lemma 3.1. Let $S^{1}(r)$ be a circle with radius r. If $|a| \leq 1$ then

$$
\int_{S^{1}(r)}\left|r a+x_{1}\right| d \mu_{S^{1}(r)}(x)=4 r^{2}\left(a \arcsin a+\sqrt{1-a^{2}}\right) .
$$

We can easily show this lemma and omit its proof.
At first, we shall prove the case where $c=0$.

In this case, we will assume that $a=0$. Then we have $b=0$ since $s_{11}=s_{22}=0$. Therefore we have

$$
\sigma_{H}(\xi, \eta)=0 .
$$

We suppose that $a>0$. Then we have

$$
\begin{aligned}
\sigma_{H}(\xi, \eta) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\sqrt{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha} \cos \beta\right| d \beta d \alpha \\
& =2 \int_{0}^{2 \pi} \sqrt{b^{2} \cos ^{2} \alpha+a^{2} \sin ^{2} \alpha} d \alpha \\
& =8 a \int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \alpha} d \alpha \quad\left(\text { put } k:=\sqrt{1-(b / a)^{2}}\right) \\
& =8 a E(k)
\end{aligned}
$$

Now we shall prove the case where $c \neq 0$.
Case I. The case where $0 \leq|b| \leq a \leq|c|$.
In this case, we shall compute the following:

$$
\begin{aligned}
\sigma_{H}(\xi, \eta) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}|c+b \cos \alpha \cos \beta-a \sin \alpha \sin \beta| d \beta d \alpha \\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|c-\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \sin (\beta+\phi)\right| d \beta d \alpha .
\end{aligned}
$$

Here if $a \neq|b|$ then we have $\sin ^{2} \alpha \leq \frac{c^{2}-b^{2}}{a^{2}-b^{2}}$, since $c^{2} \geq a^{2}$. Hence we have $|c| \geq \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}$, for all $\alpha \in[0,2 \pi]$. Therefore we obtain

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|c-\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \sin (\beta+\phi)\right| d \beta=\int_{0}^{2 \pi}|c| d \beta=2 \pi|c| \tag{3.2}
\end{equation*}
$$

If $a=|b|$ then we have

$$
\begin{equation*}
\int_{0}^{2 \pi}|c-a \sin (\beta+\phi)| d \beta=2 \pi|c| . \tag{3.3}
\end{equation*}
$$

In this case, from (3.2) and (3.3), we immediately obtain

$$
\sigma_{H}(\xi, \eta)=\frac{1}{2} \int_{0}^{2 \pi} 2 \pi|c| d \alpha=2 \pi^{2}|c|
$$

Case II. The case where $0<|c| \leq|b| \leq a$.
If $a=|b|$ then, by Lemma 3.1, we have

$$
\begin{align*}
\sigma_{H}(\xi, \eta) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}|c-a \sin (\beta+\phi)| d \beta d \alpha \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(4 c \arcsin \left(\frac{c}{a}\right)+4 \sqrt{a^{2}-c^{2}}\right) d \alpha \\
& =4 \pi c \arcsin \left(\frac{c}{a}\right)+4 \pi \sqrt{a^{2}-c^{2}} \tag{3.4}
\end{align*}
$$

Here if $a \neq|b|$ then we have $\sin ^{2} \alpha \geq \frac{c^{2}-b^{2}}{a^{2}-b^{2}}$, since $c^{2}<a^{2}$. Hence we have $|c| \leq \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}$, for all $\alpha \in[0,2 \pi]$. Therefore, by Lemma 3.1, we get

$$
\begin{aligned}
& \text { (3.5) } \int_{0}^{2 \pi}\left|c-\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \sin (\beta+\phi)\right| d \beta \\
& =4 c \arcsin \left(\frac{c}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}\right)+4 \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha-c^{2}}
\end{aligned}
$$

Let us integrate on $[0,2 \pi]$ both term of (3.5). The integral of the second part of the right-hand side of (3.5) gives

$$
\begin{align*}
& \int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha-c^{2}} d \alpha \\
= & \int_{0}^{2 \pi} \sqrt{\left(a^{2}-c^{2}\right)-\left(a^{2}-b^{2}\right) \cos ^{2} \alpha} d \alpha \\
= & 4 \sqrt{a^{2}-c^{2}} E\left(\sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}\right) . \tag{3.6}
\end{align*}
$$

Now we compute the first part of the right-hand side of (3.5). To do this, we prepare the following lemma and formulas (3.7) and (3.8).

Lemma 3.2. For integer m, we have

$$
\int \sin ^{2 m} x d x=-\cos x F\left(\frac{1}{2}, \frac{1}{2}-m, \frac{3}{2} ; \cos ^{2} x\right)
$$

We can easily show the above lemma, using the binomial theorem, the details are left to the reader.
From Lemma 3.2, it is obvious that

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{2 m} x d x=\frac{(2 m-1)!!}{(2 m)!!} \cdot \frac{\pi}{2} \tag{3.7}
\end{equation*}
$$

where

$$
m!!= \begin{cases}m(m-2) \cdots 4 \cdot 2, & m: \text { even } \\ m(m-2) \cdots 3 \cdot 1, & m: \text { odd }\end{cases}
$$

And, by a simple calculation and the binomial theorem, we obtain the following equality:

$$
\begin{equation*}
\left(\frac{1}{1+k^{2} \sin ^{2} x}\right)^{2 n+1}=\sum_{m=0}^{\infty} \frac{(2 n+2 m-1)!!}{(2 m)!!(2 n-1)!!}\left(-k^{2}\right)^{m} \sin ^{2 m} x \tag{3.8}
\end{equation*}
$$

From the Taylor expansion of $\arcsin f(x)$ and (3.8), (3.7), we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} \arcsin \left(\frac{c}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}\right) d \alpha \\
= & \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1} \int_{0}^{2 \pi} c^{2 n+1}\left(\frac{1}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}\right)^{2 n+1} d \alpha \\
= & \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{c^{2 n+1}}{2 n+1} \frac{1}{|b|^{2 n+1}} \int_{0}^{2 \pi}\left(\frac{1}{1+k^{2} \sin ^{2} \alpha}\right)^{2 n+1} d \alpha \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(2 n-1)!!(2 n+2 m-1)!!}{(2 n)!(2 n+1)(2 m)!(2 n-1)!!}\left(\frac{c}{|b|}\right)^{2 n+1}\left(-k^{2}\right)^{m} \int_{0}^{2 \pi} \sin ^{2 m} \alpha d \alpha \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(2 n-1)!!(2 n+2 m-1)!!}{(2 n)!!(2 n+1)(2 m)!!(2 n-1)!!}\left(\frac{c}{|b|}\right)^{2 n+1}\left(-k^{2}\right)^{m} \frac{(2 m-1)!!}{(2 m)!!} 2 \pi \\
= & \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{|b|}\right)^{2 n+1} \sum_{m=0}^{\infty} \frac{2 \sqrt{\pi} \Gamma\left(m+\frac{1}{2}\right) \Gamma\left(n+m+\frac{1}{2}\right)}{m!\Gamma\left(n+\frac{1}{2}\right)} \frac{\left(-k^{2}\right)^{m}}{m!} \\
= & 2 \pi \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{|b|}\right)^{2 n+1} F\left(\frac{1}{2}, n+\frac{1}{2}, 1 ;-k^{2}\right)
\end{aligned}
$$

where the step going from the second to third line used putting $k^{2}=$ $\left(a^{2}-b^{2}\right) / b^{2}$, and the fifth to sixth line used

$$
(2 n+2 m-1)!!=\frac{2^{n+m}}{\sqrt{\pi}} \Gamma\left(n+m+\frac{1}{2}\right) .
$$

Summarizing, we obtain

$$
\begin{aligned}
\sigma_{H}(\xi, \eta)= & 4 \pi c \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{|b|}\right)^{2 n+1} \\
& \times F\left(\frac{1}{2}, n+\frac{1}{2}, 1 ; \frac{b^{2}-a^{2}}{b^{2}}\right) \\
& +8 \sqrt{a^{2}-c^{2}} E\left(\sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}\right)
\end{aligned}
$$

Remark 3.3. It is trivial that the case where $a=|b|$ in just above equality goes to (3.4).

Case III. The case where $0 \leq|b| \leq|c| \leq a$.
In particular, if $0<|b|=|c|=a$ then we have

$$
\sigma_{H}(\xi, \eta)=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}|c-a \sin (\beta+\phi)| d \beta d \alpha
$$

Since $|c / a|=1$, we obtain

$$
\sigma_{H}(\xi, \eta)=\frac{1}{2} \int_{0}^{2 \pi} 2 \pi|c| d \alpha=2 \pi^{2}|c|=2 \pi^{2} a
$$

It is sufficient to calculate the following:

$$
\sigma_{H}(\xi, \eta)=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|c-\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \sin (\beta+\phi)\right| d \beta d \alpha
$$

where the case is $|b| \leq|c|<a$ or $|b|<|c| \leq a$.
In these cases, we immediately know that $0 \leq \frac{c^{2}-b^{2}}{a^{2}-b^{2}} \leq 1$. The inequality

$$
|c| \geq \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}
$$

is satisfied whenever $0 \leq \alpha \leq \theta, \pi-\theta \leq \alpha \leq \pi+\theta, 2 \pi-\theta \leq \alpha \leq 2 \pi$, where

$$
\begin{equation*}
\theta=\arcsin \sqrt{\frac{c^{2}-b^{2}}{a^{2}-b^{2}}} \tag{3.9}
\end{equation*}
$$

Then we obtain

$$
\int_{0}^{2 \pi}\left|c-\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \sin (\beta+\phi)\right| d \beta=2 \pi|c| .
$$

Therefore we have
(3.10) $\frac{1}{2}\left\{\int_{0}^{\theta} 2 \pi|c| d \alpha+\int_{\pi-\theta}^{\pi+\theta} 2 \pi|c| d \alpha+\int_{2 \pi-\theta}^{2 \pi} 2 \pi|c| d \alpha\right\}=4 \pi|c| \theta$

On the other hand, the inequality

$$
|c| \leq \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}
$$

holds for $\theta \leq \alpha \leq \pi-\theta, \pi+\theta \leq \alpha \leq 2 \pi-\theta$. Then, by Lemma 3.1, we have

$$
\begin{aligned}
& (3.11) \int_{0}^{2 \pi}\left|c-\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \sin (\beta+\phi)\right| d \beta \\
& =4 c \arcsin \left(\frac{c}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}\right)+4 \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha-c^{2}}
\end{aligned}
$$

We first integrate the second part of right-hand side of (3.11) on $[\theta, \pi-$ $\theta]$. Then we have

$$
\begin{aligned}
& \int_{\theta}^{\pi-\theta} \sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha-c^{2}} d \alpha \\
= & \int_{\theta}^{\pi-\theta} \sqrt{\left(a^{2}-b^{2}\right) \sin ^{2} \alpha-\left(c^{2}-b^{2}\right)} d \alpha .
\end{aligned}
$$

Here we put $\left(a^{2}-b^{2}\right) \sin ^{2} \alpha-\left(c^{2}-b^{2}\right)=\left(a^{2}-c^{2}\right) \sin ^{2} \psi$. Then, using the coordinate transformation, above integral is as follows:

$$
\begin{equation*}
2\left(a^{2}-c^{2}\right) \int_{0}^{\pi / 2} \frac{1-\cos ^{2} \psi}{\sqrt{\left(a^{2}-c^{2}\right) \sin ^{2} \psi+\left(c^{2}-b^{2}\right)}} d \psi \tag{3.12}
\end{equation*}
$$

From

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{d \psi}{\sqrt{\left(a^{2}-c^{2}\right) \sin ^{2} \psi+\left(c^{2}-b^{2}\right)}} \\
= & \frac{1}{\sqrt{a^{2}-b^{2}}} \int_{0}^{\pi / 2} \frac{d \psi}{\sqrt{1-\sin ^{2} \theta \cos ^{2} \psi}} \\
= & \frac{1}{\sqrt{a^{2}-b^{2}}} K(\sin \theta),
\end{aligned}
$$

and, using putting $\cos \psi=t$,

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \frac{\cos ^{2} \psi d \psi}{\sqrt{\left(a^{2}-c^{2}\right) \sin ^{2} \psi+\left(c^{2}-b^{2}\right)}} \\
= & \int_{0}^{1} \frac{t^{2} d t}{\sqrt{\left(a^{2}-b^{2}\right)-\left(a^{2}-c^{2}\right) t^{2}} \sqrt{1-t^{2}}} \\
= & \frac{1}{\sqrt{a^{2}-b^{2}}} \int_{0}^{1} \frac{t^{2}}{\sqrt{1-\sin ^{2} \theta t^{2}} \sqrt{1-t^{2}}} d t \\
= & -\frac{\sqrt{a^{2}-b^{2}}}{a^{2}-c^{2}}\{E(\sin \theta)-K(\sin \theta)\},
\end{aligned}
$$

we know that (3.12) becomes the following:

$$
\begin{equation*}
2 \sqrt{a^{2}-b^{2}}\left\{E(\sin \theta)-\frac{c^{2}-b^{2}}{a^{2}-b^{2}} K(\sin \theta)\right\} . \tag{3.13}
\end{equation*}
$$

Next we compute the first part of right-hand side of (3.11) on $[\theta, \pi-\theta]$. Since

$$
\begin{equation*}
\int_{\theta}^{\pi-\theta} \sin ^{2 m} \alpha d \alpha=2 \cos \theta F\left(\frac{1}{2}, \frac{1}{2}-m, \frac{3}{2} ; \cos ^{2} \theta\right) \tag{3.14}
\end{equation*}
$$

we have

$$
\begin{aligned}
& \int_{\theta}^{\pi-\theta} \arcsin \left(\frac{c}{\sqrt{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}}\right) d \alpha \\
= & \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(2 n-1)!(2 n+2 m-1)!!}{(2 n)!(2 n+1)(2 m)!!(2 n-1)!!}\left(\frac{c}{|b|}\right)^{2 n+1}\left(-k^{2}\right)^{m} \\
& \times \int_{\theta}^{\pi-\theta} \sin ^{2 m} \alpha d \alpha \\
= & 2 \cos \theta \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{|b|}\right)^{2 n+1} \\
& \quad \times \sum_{m=0}^{\infty} \frac{(2 n+2 m-1)!!}{(2 m)!!(2 n-1)!!}(-k)^{m} F\left(\frac{1}{2}, \frac{1}{2}-m, \frac{3}{2} ; \cos ^{2} \theta\right) .
\end{aligned}
$$

Summarizing, we obtain

$$
\begin{aligned}
\sigma_{H}(\xi, \eta)= & 4 \pi|c| \theta+4 \sqrt{a^{2}-b^{2}}\left\{E(\sin \theta)-\frac{c^{2}-b^{2}}{a^{2}-b^{2}} K(\sin \theta)\right\} \\
+ & 8 c \cos \theta \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{|b|}\right)^{2 n+1} \\
& \quad \times \sum_{m=0}^{\infty} \frac{(2 n+2 m-1)!!}{(2 m)!!(2 n-1)!!}(-k)^{m} F\left(\frac{1}{2}, \frac{1}{2}-m, \frac{3}{2} ; \cos ^{2} \theta\right) .
\end{aligned}
$$

These equalities bring the proof to a conclusion.
Last of all we here give our result in the following table:

a, b, c	$\sigma_{H}(\xi, \eta)$
$0 \leq\|b\| \leq a \leq\|c\|$	$2 \pi^{2}\|c\|$
$0 \leq\|c\| \leq\|b\| \leq a$	$\begin{aligned} & 4 \pi c \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{\|b\|}\right)^{2 n+1} \\ & \quad \times F\left(\frac{1}{2}, n+\frac{1}{2}, 1 ; \frac{b^{2}-a^{2}}{b^{2}}\right) \\ & \quad+4 \pi \sqrt{a^{2}-c^{2}} E\left(\sqrt{\frac{a^{2}-b^{2}}{a^{2}-c^{2}}}\right) \end{aligned}$
$0<\|b\|=\|c\|=a$	$2 \pi^{2}\|c\|$
$\begin{gathered} 0 \leq\|b\| \leq\|c\| \leq a \\ (a \neq\|b\|) \end{gathered}$	$\begin{gathered} 4 \pi\|c\| \theta+4 \sqrt{a^{2}-b^{2}}\left\{E(\sin \theta)-\frac{c^{2}-b^{2}}{a^{2}-b^{2}} K(\sin \theta)\right\} \\ \left.+8 c \cos \theta \sum_{n=0}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \frac{1}{2 n+1}\left(\frac{c}{\|b\|}\right)^{2 n+1}\right\} \\ \times \sum_{m=0}^{\infty} \frac{(2 n+2 m-1)!!}{(2 m)!!(2 n-1)!!}(-k)^{m} \\ \times F\left(\frac{1}{2}, \frac{1}{2}-m, \frac{3}{2} ; \cos ^{2} \theta\right) \end{gathered}$

where $\theta:=\arcsin \sqrt{\frac{c^{2}-b^{2}}{a^{2}-b^{2}}}$.

REFERENCES

[1] R. Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., No. 509, 106, (1993).
[2] H.J. Kang, Integral Geometry on product of spheres, Tsukuba J. Math., 26 (2002), 61-68.
[3] H.J. Kang, Integral geometry on submanifolds of dimension one and codimenston one in the product of spheres, Osaka J. Math., 41 (2004), 107-117.
[4] W. Miller, Jr., Lie Theory and Special Functions, Academic Press, New York, 1968.
[5] H. Umemura, Theory of Elliptic Functions: Analysis of Elliptic Curves (in Japanese), University of Tokyo Press, 2000.

Department of Mathematics Education Chinju National University of Education Jinju, 660-756 Korea
E-mail: kanghjocue.ac.kr

