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A NOTE ON THE AUSTIN’S GROUPOIDS

JUNG R. CHO AND JOZEF DUDEK

Abstract. On a groupoid satisfying the Austin’s identity, every 
n-ary linear term is essentially n-ary. That is, if a term has no 
variables appearing more than once, then the term depends on 
every variable it involves.

1. Introduction

A groupoid is a pair (G, •) of a set G and a binary operation ‘•’ 

defined on G. A term or a word in a set X = {xi,X2, •••} of symbols 

is an expression built up from X using the groupoid operation. We 

use the notation x2 for the term xx. Thus x2x, xx2 and x2x2 represent 

(xx)x, x(xx) and (xx)(xx), respectively.

A term is called n-ary if it involves n distinct variables in its expres

sion, and linear if each variable appears at most once in the expression. 

On a groupoid (G, •), an n-ary term f (xi,x2, • • • , xn) defines a map

ping of Gn into G by substitution. A mapping defined by a term in 

this way is called a term function. An n-ary term is called essentially 

n-ary over a groupoid (G, •) if, as a term function, it depends on each 

xi for i = 1,2, • • • , n. That is,

f(ai, • • • ,ai-i,b,aa • • •,如)=f(ai, • • • ,ai-i,c,ai+i, • • • ,s)

for some elements ai, • • • , a《_i, a《+i, • • • ,an,b,c in G.
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By pn(G, •), we denote the number of all essentially n-ary terms 

over (G, •) for all n > 0. We say that a groupoid (G, •) is term infinite 

if Pn(G, •) is infinite for all n > 2. Of course, term infinite algebras are 

infinite but not conversely.

A groupoid (G, •) is called nontrivial if G has more than one el

ement, and proper if the basic operation xy is essentially binary. In 

another word, a groupoid which is neither a left-zero semigroup nor 

right-semigroup is proper.

The groupoid identity

(A) ((y2y)x)((y2 (y2y)z) = x

is called the Austin’s identity, and a groupoid (G, •) satisfying this 

identity is called an Austin’s groupoid. Since its appearance in [1], this 

identity appeared in many papers ([3], [4], [5], [6], [8]), because the 

identity initiated the research on identities which have no nontrivial 

finite models.

A nontrivial Austin’s groupoid has the following interesting prop

erties.

Theorem 1. ([1], [2]) Every nontrivialAustin’s groupoidisinfinite.

Theorem 2. ([6]) Every nontrivial Austin’s groupoid is term
infinite.

In [7], in comparison with the Austin’s identity, it was shown that 

the identity ((y2y)x)(y2z) = x is the shortest groupoid identity which 

has no nontrivial finite models.

In this paper, we show the following theorem.

Theorem 3. On a non-trivial Austin’s groupoid, every n-ary linear 
term is essentially n-ary for all n > 1.
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2. Some properties of Austin’s groupoids

An element a of a groupoid is called idempotent if a2 = a.

For every n > 1, define two special terms fn and gn by

fn(X1 ,X2,…,Xn) = ((••- (31说)购)---)爲-1 )爲

and gn(X1,X2,…,Xn) = X1(X2(- • • (Xn-2(Xn-1Xn))…)).

With a groupoid (G, •) and an element a of G, we define a mapping 
Ta : G — G by Ta(x) = (a2a)x for all x in G.

Lemma 2.1. If (G, •) is a nontrivial Austin’s groupoid, then we have 
the following.

i. For each a in G, the mapping Ta is injective.
ii. (G, •) is proper.
iii. (G, •) has no idempotent element.
iv. The terms x, x2 and x2x are essentially unary and pairwise dis

tinct.
v. The terms fn and gn are essentially n-ary for all n > 1.

Proof. (i) If Ta(x) = Ta(y) then, by the Austin’s identity,

x = ((a2 a)x)((a2(a2a)z) = (Ta(x))((a2(a2a)z)

=(Ta(y))((a2(a2a))z) = ((a2a)y)((a2(a2 a)z) = y.

(ii) Assume that xy does not depend on x, then we have xy = y2. 

Putting (u2u)v for x and (u2(u2u))z for y in this identity, we get

v = ((u2u)v)((u2 (u2u))z) = xy = y2 = (u2(u2u))z)2,

which is impossible in a nontrivial groupoid. Assume now that xy 
does not depend on y, then we have xy = x2 and so Ta(b) = (a2a)b = 

(a2a)2 for all b in G. That is, Ta is constant, which contradicts (i). 

Therefore, xy is essentially binary. (iii) Suppose to the contrary that 

(G, •) has an idempotent element, say a. Note that a2a = a2(a2a) = a 
and so (ax)(ay) = ((a2a)x)(a2(a2a))y = x. In particular, a(ay) = 

(aa)(ay) = a. Putting au for x in x = (ax)(ay), we obtain that 

au = (a(au))(ay) = a(ay) = a and hence x = (ax)(ay) = aa = a, a 

contradiction. (iv) By (iii), x2 is essentially unary and x2 = x. Assume 

x2x = c, a constant. Then x = ((y2y)x)((y2(y2y))z) = (cx)((y2c)z). 
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Putting y = c, we get x = (cx)((c2c)z) = (cx)(cz). Putting c for 

x and y, we have c = c2c2. Putting c2 for x in c = x2x we have 

c = (c2)2c2 = cc2. Now putting c2 for x in x = (cx)(cz), we have c2 = 

(cc2)(cz) = c(cz) and so c2 = cc2 = c, a contradiction to (iii). Thus 

x2x is essentially unary. Now we show that x2x = x. Assume x2x = x, 

then x = ((y2y)x)((y2(y2y))z) = (yx)((y2y)z) = (yx)(yz). Putting x2 

for y, we have x = (x2x)(x2z) and hence xx = (x2x)(x2x) = x, a 

contradiction to (iii). Thus x2x = x. Now assume x2x = x2 , then 
x = ((y2y)x)((y2(y2y))z) = (y2x)((y2y2)z) and so

(*) x2 = (y2x2)((y2y2)z).

Putting x for y and x2 for z in (*), we have x2 = (x2x2)((x2x2)x2)= 
(x2x2)((x2)2x2) = (x2x2)(x2)2. Put x for y and (x2)2 for z in (*), 

then x2 = (x2x2)((x2x2)(x2)2) = (x2x2)x2 = (x2)2x2 = (x2)2. That is, 

x2 is an idempotent element, which is a contradiction to (iii). Thus 

x2x = x2. (v) We use induction on n. It is clear for n =1,2 as (G, •) 
is proper. Let n > 3 and assume that gk are essentially k-ary for 

1 < k < n — 1. By (A), we have

gn-1(x2 • • • ,xn-i) = x2(x3« • • 3侃-從侃)…))

=[(y2y)(x2(x3(・• • (xn-ixn) • • • )))]((y2(y2y))z)

=gn(y2y,x2, • • • ,x«)((y2(y2y))z).

By induction hypothesis, gn-i and hence gn depends on x2, • • • , xn. 

We also have

gn-1(xi,x2, • • • ,xra-i) = xi(x2(• • • (xra-2xra-i)…))

=xi(x2 (• • • (xn-2[((y2y)xn-i)((y2(y2y))z)]) • • •))

=gn(xi,x2, • • • ,xn-2, (y2y)xn-i, (y2(y2y))z).

By induction hypothesis, gn-i and hence gn depends on xi. Thus gn 

depends on all its variables. To prove fn is essentially n-ary for n > 3, 

we first show that f3(x,y,z) = (xy)z is essentially ternary. Assume f3 

does not depend on x. Then (xy)z = (uy)z. Putting (x2x)y for x and 

(x2(x2x))z for y in this identity, we have [((x2x)y)((x2(x2x))z)]z = 

[u((x2(x2x2))z)]z, and so yz = [u((x2(x2x2))z)]z. This implies that yz 
does not depends on y, which is a contradiction to (ii). Thus, f3 de

pends on x. Since y = ((x2x)y)(x2(x2x))z) = f3(x2x,y,x2(x2x)z) we 
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infer that f depends on y. Using (A) again, we infer that f depends 

on z by the identity uz = (((x2x)u)((y2(y2y))v))z = fs((x2x)u, (y2(y2y))v, z). 

Thus we have proved that f3 is essentially ternary. Now, suppose n > 3 

and assume that fk is essentially k-ary for 2 < k < n — 1. Observe 

that, by the identity (A), we have

fn-1(x2,X3,…,Xn) = fn((x2x)x2, (x2 (x2x)) Z, X3,…,Xra)

and fn-2(x2, X4, •…,Xn) = fn(x2X, X2, (x2(x2x))z, X4, - - - , Xn).

Thus, by induction hypothesis, we deduce that fn depends on all vari

ables. That is, fn is essentially n ary for all n > 2. □

Corollary 2.2. For a nontrivial Austin’s groupoid (G, •), we have 
Pn(G, •) > 2 for all n > 1.

Lemma 2.3. Let (G, •) be a nontrivial Austin’s groupoid. Then we 

have

i. For mappings S,©2 : G — G, we have 饥=饥 if and only if 

S(xy) = ©2(xy) for all x, y e G. Here, xy can be replaced by fn 

or gn for any n > 1.
ii. For any a in G, the mappings Ta is not the identity mapping.

iii. The mapping n i T^ is injective or there exists an integer m 

such that Tm(x) = x for all x in G.

iv. The term (x2x)y depends on y and (x2x)y = y.

Proof. (i) Assume that ©i(xy) = S(xy). Putting (y2y)x for x and 

(y2 (y2y))z for y, we have ©i(x) = ©2(x). Further proof proceeds by 

induction on the arity of the terms. (ii) Assume that Ta(x') = x for 

some a and all x e G. Then we have (a2a)x = x. Putting x = a2a we 

see that a2a is idempotent, which contradicts Lemma 2.1(iii). Thus 

Ta = Id. (iii) Suppose the mapping n i T* is not injective, then 

Tj =以 for some j < k. Then T^-j(Tj(b)) = T(b) = Tj(b) for all b 

in G. Since Ta and hence Tj is injective by Lemma 2.1(i), we see that 

Tj-j(x) = x for all x in G. That is, Tjk-j = Id. (iv) The fact that 

(x2x)y depends on y follows from Lemma 2.1(i). If (x2x)y = y, then 

(x2x)(x2x) = x2x, which contradicts Lemma 2.1(iii). Thus (x2x)y = 

y. 口
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3. Proof of Theorem

In this section, we prove Theorem 3 by induction on the arity of 

linear terms.

For n = 1, 2, 3, the conclusion follows by Lemma 2.1. Let n > 4 

and assume that the assertion is true for all k-ary linear terms for 

1 < k < n — 1. Let f be an n-ary linear term. So, all variables in 

f are mutually distinct. We have two cases: (1) f contains at least 

two subterms of the form XiXj and (2) f contains only one subterm of 

the form x《Xj. Assume case (1) and so f contains subterms XiX2 and 

X3X4 after relabeling of variables if needed. Then, there are (n—1)-ary 

linear terms g and h such that

f (X1,X2, •…,Xn) = g(XiX2,X3, •…,Xn) = h(Xi ,X2,X3X4,X5, - - - ,Xn).

Then using (A) we have

f ((y2y)Xi, (y2(y2y))z,X3, • • • ,Xn) = g(Xi,X3, • • • ,Xn)

and f (Xi,X2, (y2y)X3, (y2(y2y))z, X5, • • • ,Xn) = h(Xi,X2,X3,X5 • • • ,Xn).

Since g and h are essentially by induction hypothesis, these identi

ties show that f depends on all Xi, X2, • • • , Xn, i.e., f is essentially 

n-ary. Now, consider case (2). Since n > 4, f contains a subterm of 

the form (XiX2)X3 or X3(XiX2). There is a (n — 1)-ary linear term g 
such that f (Xi, X2, • • • , Xn) = g(XiX2, X3, • • • , Xn), and then we have 

f((y2y)Xi, (y2(y2y))z,X3, • • • ,Xn) = g(Xi,X3, • • • ,Xn). By induction g 
depends on Xi, X3, • • • , Xn, and hence so does f. If f contains (XiX2)X3 

as a subterm, let f (xi , ... , Xn) = h((XiX2)X3,X4, ... ,Xn) for some 

(n — 2)-ary linear term h. Then f (y2 y, X2, (y2 (y2y))z, X4, ... , Xn) = 

h(X2,X4, • • • , Xn) and so f also depends on X2. If f contains X3(XiX2) 
as a subterm, since gn is essentially n-ary by Lemma 2.1(v), we may 

assume that f is not of the form of gn . Then f is of the form

f (Xi ,X2, • • • ,Xn) = • • • ([Xk(…(X3(XiX2))…)]Xfc+i)… 

for some k > 3. Putting y2y for Xk and (y2(y2y))z for Xk+i, we have 

by (A) that

f (Xi,X2, ••• ,Xk-i,y2y, (y2(y2 y))z,Xk+2, ••• ,Xn)

= • • • (• • • (X3(XiX2)) • • • ) • • • ,
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where the right-hand side is a linear term without the variables Xk 

and Xk+i. By induction, f depends on each variables appearing on the 

right-hand side, in particular on X2 as well. Consequently, f depends 

on every variable it involves. This completes the proof.
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