A NOTE ON THE AUSTIN'S GROUPOIDS

Jung R. Cho and Józef Dudek

Abstract

On a groupoid satisfying the Austin's identity, every n-ary linear term is essentially n-ary. That is, if a term has no variables appearing more than once, then the term depends on every variable it involves.

1. Introduction

A groupoid is a pair (G, \cdot) of a set G and a binary operation '.' defined on G. A term or a word in a set $X=\left\{x_{1}, x_{2}, \cdots\right\}$ of symbols is an expression built, up from X using the groupoid operation. We use the notation x^{2} for the term $x x$. Thus $x^{2} x, x x^{2}$ and $x^{2} x^{2}$ represent $(x x) x, x(x x)$ and $(x x)(x x)$, respectively.

A term is called n-ary if it involves n distinct variables in its expression, and linear if each variable appears at most once in the expression. On a groupoid ($G, \cdot)$, an n-ary term $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ defines a mapping of G^{n} into G by substitution. A mapping defined by a term in this way is called a term function. An n-ary term is called essentially n-ary over a groupoid (G, \cdot) if, as a term function, it depends on each x_{i} for $i=1,2, \cdots, n$. That is,

$$
f\left(a_{1}, \cdots, a_{i-1}, b, a_{i+1}, \cdots, a_{n}\right) \neq f\left(a_{1}, \cdots, a_{i-1}, c, a_{i+1}, \cdots, a_{n}\right)
$$

for some elements $a_{1}, \cdots, a_{i-1}, a_{i+1}, \cdots, a_{n}, b, c$ in G.
Received October 25, 2006.
2000 Mathematics Subject Classification: 08A40, 20 N 02.
Key words and phrases: Austin's identity, groupoids, term, essentially n-ary, term-infinite.

For the first author, this work was supported for two years by Pusan National University Research Grant.

By $p_{n}(G, \cdot)$, we denote the number of all essentially n-ary terms over (G, \cdot) for all $n \geq 0$. We say that a groupoid (G, \cdot) is term infinite if $p_{n}(G, \cdot)$ is infinite for all $n \geq 2$. Of course, term infinite algebras are infinite but not conversely.

A groupoid (G, \cdot) is called nontrivial if G has more than one element, and proper if the basic operation $x y$ is essentially binary. In another word, a groupoid which is neither a left-zero semigroup nor right-semigroup is proper.

The groupoid identity

$$
\begin{equation*}
\left(\left(y^{2} y\right) x\right)\left(\left(y^{2}\left(y^{2} y\right) z\right)=x\right. \tag{A}
\end{equation*}
$$

is called the Austin's identity, and a groupoid ($G, \cdot \cdot$) satisfying this identity is called an Austin's groupoid. Since its appearance in [1], this identity appeared in many papers ([3], [4], [5], [6], [8]), because the identity initiated the research on identities which have no nontrivial finite models.

A nontrivial Austin's groupoid has the following interesting properties.

Theorem 1. ([1], [2]) Every nontrivial Austin's groupoid is infinite.
Theorem 2. ([6]) Every nontrivial Austin's groupoid is terminfinite.

In [7], in comparison with the Austin's identity, it was shown that the identity $\left(\left(y^{2} y\right) x\right)\left(y^{2} z\right)=x$ is the shortest groupoid identity which has no nontrivial finite models.

In this paper, we show the following theorem.

Theorem 3. On a non-trivial Austin's groupoid, every n-ary linear term is essentially n-ary for all $n \geq 1$.

2. Some properties of Austin's groupoids

An element a of a groupoid is called idempotent if $a^{2}=a$.
For every $n \geq 1$, define two special terms f_{n} and g_{n} by

$$
\begin{aligned}
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =\left(\left(\cdots\left(\left(x_{1} x_{2}\right) x_{3}\right) \cdots\right) x_{n-1}\right) x_{n} \\
\text { and } \quad g_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =x_{1}\left(x_{2}\left(\cdots\left(x_{n-2}\left(x_{n-1} x_{n}\right)\right) \cdots\right)\right) .
\end{aligned}
$$

With a groupoid (G, \cdot) and an element a of G, we define a mapping $T_{a}: G \rightarrow G$ by $T_{a}(x)=\left(a^{2} a\right) x$ for all x in G.

Lemma 2.1. If (G, \cdot) is a nontrivial Austin's groupoid, then we have the following.
i. For each a in G, the mapping T_{a} is injective.
ii. (G, \cdot) is proper.
iii. (G, \cdot) has no idempotent element.
iv. The terms x, x^{2} and $x^{2} x$ are essentially unary and pairwise distinct.
v. The terms f_{n} and g_{n} are essentially n-ary for all $n \geq 1$.

Proof. (i) If $T_{a}(x)=T_{a}(y)$ then, by the Austin's identity,

$$
\begin{aligned}
x & =\left(\left(a^{2} a\right) x\right)\left(\left(a^{2}\left(a^{2} a\right) z\right)=\left(T_{a}(x)\right)\left(\left(a^{2}\left(a^{2} a\right) z\right)\right.\right. \\
& =\left(T_{a}(y)\right)\left(\left(a^{2}\left(a^{2} a\right)\right) z\right)=\left(\left(a^{2} a\right) y\right)\left(\left(a^{2}\left(a^{2} a\right) z\right)=y .\right.
\end{aligned}
$$

(ii) Assume that $x y$ does not depend on x, then we have $x y=y^{2}$. Putting ($\left.u^{2} u\right) v$ for x and $\left(u^{2}\left(u^{2} u\right)\right) z$ for y in this identity, we get

$$
\left.v=\left(\left(u^{2} u\right) v\right)\left(\left(u^{2}\left(u^{2} u\right)\right) z\right)=x y=y^{2}=\left(u^{2}\left(u^{2} u\right)\right) z\right)^{2}
$$

which is impossible in a nontrivial groupoid. Assume now that $x y$ does not depend on y, then we have $x y=x^{2}$ and so $T_{a}(b)=\left(a^{2} a\right) b=$ $\left(a^{2} a\right)^{2}$ for all b in G. That is, T_{a} is constant, which contradicts (i). Therefore, $x y$ is essentially binary. (iii) Suppose to the contrary that (G, \cdot) has an idempotent element, say a. Note that $a^{2} a=a^{2}\left(a^{2} a\right)=a$ and so $(a x)(a y)=\left(\left(a^{2} a\right) x\right)\left(a^{2}\left(a^{2} a\right)\right) y=x$. In particular, $a(a y)=$ $(a a)(a y)=a$. Putting $a u$ for x in $x=(a x)(a y)$, we obtain that $a u=(a(a u))(a y)=a(a y)=a$ and hence $x=(a x)(a y)=a a=a$, a contradiction. (iv) By (iii), x^{2} is essentially unary and $x^{2} \neq x$. Assume $x^{2} x=c$, a constant. Then $x=\left(\left(y^{2} y\right) x\right)\left(\left(y^{2}\left(y^{2} y\right)\right) z\right)=(c x)\left(\left(y^{2} c\right) z\right)$.

Putting $y=c$, we get $x=(c x)\left(\left(c^{2} c\right) z\right)=(c x)(c z)$. Putting c for x and y, we have $c=c^{2} c^{2}$. Putting c^{2} for x in $c=x^{2} x$ we have $c=\left(c^{2}\right)^{2} c^{2}=c c^{2}$. Now putting c^{2} for x in $x=(c x)(c z)$, we have $c^{2}=$ $\left(c c^{2}\right)(c z)=c(c z)$ and so $c^{2}=c c^{2}=c$, a contradiction to (iii). Thus $x^{2} x$ is essentially unary. Now we show that $x^{2} x \neq x$. Assume $x^{2} x=x$, then $x=\left(\left(y^{2} y\right) x\right)\left(\left(y^{2}\left(y^{2} y\right)\right) z\right)=(y x)\left(\left(y^{2} y\right) z\right)=(y x)(y z)$. Putting x^{2} for y, we have $x=\left(x^{2} x\right)\left(x^{2} z\right)$ and hence $x x=\left(x^{2} x\right)\left(x^{2} x\right)=x$, a contradiction to (iii). Thus $x^{2} x \neq x$. Now assume $x^{2} x=x^{2}$, then $x=\left(\left(y^{2} y\right) x\right)\left(\left(y^{2}\left(y^{2} y\right)\right) z\right)=\left(y^{2} x\right)\left(\left(y^{2} y^{2}\right) z\right)$ and so

$$
\begin{equation*}
x^{2}=\left(y^{2} x^{2}\right)\left(\left(y^{2} y^{2}\right) z\right) \tag{*}
\end{equation*}
$$

Putting x for y and x^{2} for z in (*), we have $x^{2}=\left(x^{2} x^{2}\right)\left(\left(x^{2} x^{2}\right) x^{2}\right)=$ $\left(x^{2} x^{2}\right)\left(\left(x^{2}\right)^{2} x^{2}\right)=\left(x^{2} x^{2}\right)\left(x^{2}\right)^{2}$. Put x for y and $\left(x^{2}\right)^{2}$ for z in $(*)$, then $x^{2}=\left(x^{2} x^{2}\right)\left(\left(x^{2} x^{2}\right)\left(x^{2}\right)^{2}\right)=\left(x^{2} x^{2}\right) x^{2}=\left(x^{2}\right)^{2} x^{2}=\left(x^{2}\right)^{2}$. That is, x^{2} is an idempotent element, which is a contradiction to (iii). Thus $x^{2} x \neq x^{2}$. (v) We use induction on n. It is clear for $n=1,2$ as (G, \cdot) is proper. Let $n \geq 3$ and assume that g_{k} are essentially k-ary for $1 \leq k \leq n-1$. By (A), we have

$$
\begin{aligned}
g_{n-1}\left(x_{2} \cdots, x_{n-1}\right) & =x_{2}\left(x_{3}\left(\cdots\left(x_{n-1} x_{n}\right) \cdots\right)\right) \\
& =\left[\left(y^{2} y\right)\left(x_{2}\left(x_{3}\left(\cdots\left(x_{n-1} x_{n}\right) \cdots\right)\right)\right]\left(\left(y^{2}\left(y^{2} y\right)\right) z\right)\right. \\
& =g_{n}\left(y^{2} y, x_{2}, \cdots, x_{n}\right)\left(\left(y^{2}\left(y^{2} y\right)\right) z\right) .
\end{aligned}
$$

By induction hypothesis, g_{n-1} and hence g_{n} depends on x_{2}, \cdots, x_{n}. We also have

$$
\begin{aligned}
g_{n-1}\left(x_{1}, x_{2}, \cdots, x_{n-1}\right) & =x_{1}\left(x_{2}\left(\cdots\left(x_{n-2} x_{n-1}\right) \cdots\right)\right) \\
& =x_{1}\left(x_{2}\left(\cdots\left(x_{n-2}\left[\left(\left(y^{2} y\right) x_{n-1}\right)\left(\left(y^{2}\left(y^{2} y\right)\right) z\right)\right]\right) \cdots\right)\right) \\
& =g_{n}\left(x_{1}, x_{2}, \cdots, x_{n-2},\left(y^{2} y\right) x_{n-1},\left(y^{2}\left(y^{2} y\right)\right) z\right)
\end{aligned}
$$

By induction hypothesis, g_{n-1} and hence g_{n} depends on x_{1}. Thus g_{n} depends on all its variables. To prove f_{n} is essentially n-ary for $n \geq 3$, we first show that $f_{3}(x, y, z)=(x y) z$ is essentially ternary. Assume f_{3} does not depend on x. Then $(x y) z=(u y) z$. Putting $\left(x^{2} x\right) y$ for x and $\left(x^{2}\left(x^{2} x\right)\right) z$ for y in this identity, we have $\left[\left(\left(x^{2} x\right) y\right)\left(\left(x^{2}\left(x^{2} x\right)\right) z\right)\right] z=$ $\left[u\left(\left(x^{2}\left(x^{2} x^{2}\right)\right) z\right)\right] z$, and so $y z=\left[u\left(\left(x^{2}\left(x^{2} x^{2}\right)\right) z\right)\right] z$. This implies that $y z$ does not depends on y, which is a contradiction to (ii). Thus, f_{3} depends on x. Since $\left.y=\left(\left(x^{2} x\right) y\right)\left(x^{2}\left(x^{2} x\right)\right) z\right)=f_{3}\left(x^{2} x, y, x^{2}\left(x^{2} x\right) z\right)$ we
infer that f_{3} depends on y. Using (A) again, we infer that f_{3} depends on z by the identity $u z=\left(\left(\left(x^{2} x\right) u\right)\left(\left(y^{2}\left(y^{2} y\right)\right) v\right)\right) z=f_{3}\left(\left(x^{2} x\right) u,\left(y^{2}\left(y^{2} y\right)\right) v, z\right)$.
Thus we have proved that f_{3} is essentially ternary. Now, suppose $n>3$ and assume that f_{k} is essentially k-ary for $2 \leq k \leq n-1$. Observe that, by the identity (A), we have

$$
\begin{aligned}
f_{n-1}\left(x_{2}, x_{3}, \cdots, x_{n}\right) & =f_{n}\left(\left(x^{2} x\right) x_{2},\left(x^{2}\left(x^{2} x\right)\right) \tilde{z}, x_{3}, \cdots, x_{n}\right) \\
\text { and } \quad f_{n-2}\left(x_{2}, x_{4}, \cdots, x_{n}\right) & \left.=f_{n}\left(x^{2} x, x_{2},\left(x^{2}\left(x^{2} x\right)\right)\right)_{z}, x_{4}, \cdots, x_{n}\right) .
\end{aligned}
$$

Thus, by induction hypothesis, we deduce that f_{n} depends on all variables. That is, f_{n} is essentially n ary for all $n \geq 2$.

Corollary 2.2. For a nontrivial Austin's groupoid (G, \cdot), we have $p_{n}(G, \cdot) \geq 2$ for all $n \geq 1$.

Lemma 2.3. Let (G, \cdot) be a nontrivial Austin's groupoid. Then we have
i. For mappings $\phi_{1}, \phi_{2}: G \rightarrow G$, we have $\phi_{1}=\phi_{2}$ if and only if $\phi_{1}(x y)=\phi_{2}(x y)$ for all $x, y \in G$. Here, $x y$ can be replaced by f_{n} or g_{n} for any $n \geq 1$.
ii. For any a in G, the mappings T_{a} is not the identity mapping.
iii. The mapping $n \mapsto T_{a}^{n}$ is injective or there exists an integer m such that $T_{a}^{m}(x)=x$ for all x in G.
iv. The term $\left(x^{2} x\right) y$ depends on y and $\left(x^{2} x\right) y \neq y$.

Proof. (i) Assume that $\phi_{1}(x y)=\phi_{2}(x y)$. Putting $\left(y^{2} y\right) x$ for x and $\left(y^{2}\left(y^{2} y\right)\right) z$ for y, we have $\phi_{1}(x)=\phi_{2}(x)$. Further proof proceeds by induction on the arity of the terms. (ii) Assume that $T_{a}(x)=x$ for some a and all $x \in G$. Then we have $\left(a^{2} a\right) x=x$. Putting $x=a^{2} a$ we see that $a^{2} a$ is idempotent, which contradicts Lemma 2.1(iii). Thus $T_{a} \neq I d$. (iii) Suppose the mapping $n \mapsto T_{a}^{n}$ is not injective, then $T_{a}^{j}=T_{a}^{k}$ for some $j<k$. Then $T_{a}^{k-j}\left(T_{a}^{j}(b)\right)=T_{a}^{k}(b)=T_{a}^{j}(b)$ for all b in G. Since T_{a} and hence T_{a}^{j} is injective by Lemma 2.1(i), we see that $T_{a}^{k-j}(x)=x$ for all x in G. That is, $T_{a}^{k-j}=I d$. (iv) The fact that ($\left.x^{2} x\right) y$ depends on y follows from Lemma 2.1(i). If $\left(x^{2} x\right) y=y$, then $\left(x^{2} x\right)\left(x^{2} x\right)=x^{2} x$, which contradicts Lemma 2.1(iii). Thus $\left(x^{2} x\right) y \neq$ y.

3. Proof of Theorem

In this section, we prove Theorem 3 by induction on the arity of linear terms.

For $n=1,2,3$, the conclusion follows by Lemma 2.1. Let $n \geq 4$ and assume that the assertion is true for all k-ary linear terms for $1 \leq k \leq n-1$. Let f be an n-ary linear term. So, all variables in f are mutually distinct. We have two cases: (1) f contains at least two subterms of the form $x_{i} x_{j}$ and (2) f contains only one subterm of the form $x_{i} x_{j}$. Assume case (1) and so f contains subterms $x_{1} x_{2}$ and $x_{3} x_{4}$ after relabeling of variables if needed. Then, there are ($n-1$)-ary linear terms g and h such that

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=g\left(x_{1} x_{2}, x_{3}, \cdots, x_{n}\right)=h\left(x_{1}, x_{2}, x_{3} x_{4}, x_{5}, \cdots, x_{n}\right) .
$$

Then using (A) we have

$$
f\left(\left(y^{2} y\right) x_{1},\left(y^{2}\left(y^{2} y\right)\right) z, x_{3}, \cdots, x_{n}\right)=g\left(x_{1}, x_{3}, \cdots, x_{n}\right)
$$

and $f\left(x_{1}, x_{2},\left(y^{2} y\right) x_{3},\left(y^{2}\left(y^{2} y\right)\right) z, x_{5}, \cdots, x_{n}\right)=h\left(x_{1}, x_{2}, x_{3}, x_{5} \cdots, x_{n}\right)$.
Since g and h are essentially by induction hypothesis, these identities show that f depends on all $x_{1}, x_{2}, \cdots, x_{n}$, i.e., f is essentially n-ary. Now, consider case (2). Since $n \geq 4, f$ contains a subterm of the form $\left(x_{1} x_{2}\right) x_{3}$ or $x_{3}\left(x_{1} x_{2}\right)$. There is a $(n-1)$-ary linear term g such that $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=g\left(x_{1} x_{2}, x_{3}, \cdots, x_{n}\right)$, and then we have $f\left(\left(y^{2} y\right) x_{1},\left(y^{2}\left(y^{2} y\right)\right) z, x_{3}, \cdots, x_{n}\right)=g\left(x_{1}, x_{3}, \cdots, x_{n}\right)$. By induction g depends on $x_{1}, x_{3}, \cdots, x_{n}$, and hence so does f. If f contains $\left(x_{1} x_{2}\right) x_{3}$ as a subterm, let $f\left(x_{1}, \cdots, x_{n}\right)=h\left(\left(x_{1} x_{2}\right) x_{3}, x_{4}, \cdots, x_{n}\right)$ for some $(n-2)$-ary linear term h. Then $f\left(y^{2} y, x_{2},\left(y^{2}\left(y^{2} y\right)\right) z, x_{4}, \cdots, x_{n}\right)=$ $h\left(x_{2}, x_{4}, \cdots, x_{n}\right)$ and so f also depends on x_{2}. If f contains $x_{3}\left(x_{1} x_{2}\right)$ as a subterm, since g_{n} is essentially n-ary by Lemma $2.1(\mathrm{v})$, we may assume that f is not of the form of g_{n}. Then f is of the form

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\cdots\left(\left[x_{k}\left(\cdots\left(x_{3}\left(x_{1} x_{2}\right)\right) \cdots\right)\right] x_{k+1}\right) \cdots
$$

for some $k \geq 3$. Putting $y^{2} y$ for x_{k} and $\left(y^{2}\left(y^{2} y\right)\right) z$ for x_{k+1}, we have by (A) that

$$
\begin{gathered}
f\left(x_{1}, x_{2}, \cdots, x_{k-1}, y^{2} y,\left(y^{2}\left(y^{2} y\right)\right) z, x_{k+2}, \cdots, x_{n}\right) \\
=\cdots\left(\cdots\left(x_{3}\left(x_{1} x_{2}\right)\right) \cdots\right) \cdots
\end{gathered}
$$

where the right-hand side is a linear term without the variables x_{k} and x_{k+1}. By induction, f depends on each variables appearing on the right-hand side, in particular on x_{2} as well. Consequently, f depends on every variable it involves. This completes the proof.

REFERENCES

[1] A.K. Austin, A note on models of identities, Proc. Amer. Math. Soc. 16(1965), 522-523.
[2] A.K. Austin, Finite models of laws in two variables, Proc. Amer. Math. Soc. 17 (1966), 1410-1412.
[3] J. Cho and J. Dudek, Affine spaces as models for regular identities, Colloquium Mathematicum, 91/1(2002), 29-38.
[4] J. Dudek, A note on models of identities, Algebra Universalis, 25(1988), 400401.
[5] J. Dudek and A. Kisielewicz, On finite models of regular identitites, Notre Dame J. Formal Logic, 30/2(1989), 624-628.
[6] A. Kisielewicz, Varieties of algebras with non nontrivial finite members, Lattice, Semigroups, and Universal Algebra (J. Almeida et al., eds.), Plenum Press, New York, 1990, 129-136.
[7] A. Kisielewicz, Austin identities, Algebra Universalis, 38(1997), 324-328.
[8] W. Taylor, Some interesting identities, An. Inst. Mat. Univ. Nac. Autónoma México, 20(1980), 127-156.

Department of Mathematics
Pusan National University
Busan 609-735, Korea
E-mail: jungcho@pusan.ac.kr
Mathematical Institute
University of Wrocław
pl. Grunwaldzki 2/4
50-384 Wroctaw, Poland
E-mail: dudek@math.uni.wroc.pl

