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A NOTE ON THE AUSTIN’S GROUPOIDS

Jung R. CHO AND JOZEF DUDEK

ABSTRACT. On a groupoid satisfying the Austin’s identity, every
n-ary linear term is essentially n-ary. That is, if a term has no
variables appearing more than once, then the term depends on
every variable it involves.

1. Introduction

A groupoid is a pair (G,-) of a set G and a binary operation *’
defined on G. A termor a word in a set X = {x), x5, } of symbols
is an expression built up from X using the groupoid operation. We
use the notation x? for the term zx. Thus z%r, x2? and x?z? represent
(xx)x, x{xx) and (xx}{xx), respectively.

A term is called n-ary if it involves n distinct variables in its expres-
sion, and lnear if each variable appears at most once in the expression.
On a groupoid (G, ), an n-ary term f{xy,x2,+++ ,2,) defines a map-
ping of G™ into G by substitution. A mapping defined by a term in
this way is called a term function. An n-ary term is called essentially
n-ary over a groupoid (G, -) if, as a term function, it depends on each
x; fort=1,2,--- ,n That is,

f(ala"' Vi1 b gy, Jlu) #f(illa"' 2 Qyim1,Cy Qi1 " Jln)

for some elements ap. - -+ ,@i—1, Qip1.c -+ A, 0, ¢ N G
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By pn(G,-}, we denote the number of all essentially n-ary terms
over {(G,-) for all n > 0. We say that a groupoid (G, -} is term infinite
if p,(G,+) is infinite for all n > 2. Of course, term infinite algebras are
infinite but not conversely.

A groupoid {G,-) is called nontriviel if G has more than one el-
ement, and proper if the basic operation xy is essentially binary. In
another word, a groupoid which is neither a left-zero semigroup nor
right-semigroup is proper.

The groupoid identity

(A) (PGP =

is called the Austin’s identity, and a groupoid (G, ) satisfying this
identity is called an Austin’s groupoid. Since its appearance in [1], this
identity appeared in many papers ([3], [4], [5], [6], [8]), because the
identity initiated the research on identities which have no nontrivial
finite models.

A nontrivial Austin’s groupoid has the following interesting prop-
erties.
THEOREM 1. {[1], [2]) Every nontrivial Austin’s groupoid is infinite.

THEOREM 2. {[6]) Everv nontrivial Austin’s groupoid is term-
infinite.

In [7], in comparison with the Austin’s identity, it was shown that
the identity {((y*y)x)(y2z) = x is the shortest groupoid identity which
has no nontrivial finite models.

In this paper, we show the following theorem.

THEOREM 3. On a non-trivial Austin’s groupoid, every n-ary linear
term is essentially n-ary for alln > 1.
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2. Some properties of Austin’s groupoids

An element ¢ of a groupoid is called idempotent if a* = a.
For every n > 1, define two special terms f, and ¢, by
fal@r, @, s} = (- ((x2)as) - Y1)z
and  gnl(r1, T2, s @0} = x1(X2( - - (n—a{Tn_12n) )+ )).

With a groupoid {G,-) and an element @ of G, we define a mapping
T, : G — G by T,{x) = (a*a)xr for all z in G.

LEMMA 2.1. If (G, ") is a nontrivial Austin’s groupoid, then we have

the following.

i. For each a in G, the mapping T, is injective.

ii. {G, )} is proper.
ili. {G,-) has no idempotent element.

iv. The terms x, 2 and x%c are essentially unary and pairwise dis-

tinct.
v. The terms f,, and g, are essentially n-ary for all n > 1.

Proof. (i) If T,(x) = T,(y) then, by the Austin’s identity,
= ((a*a)x)((d*(¢®a)2) = (Tu(2)) ({(d*(a®a)2)
= (T.(y)((a*(d®a))z) = ((Pa)y)((a*(a’a)z) = y.

(ii) Assume that zy does not depend on x, then we have zy = v°.
Putting (v*u}v for r and (u*(v?u)}z for y in this identity, we get

v = ((WPu)o)((u?(u*u))2) = 2y = ¢* = (u(u’u))2)®,
which is impossible in a nontrivial groupoid. Assume now that xy
does not depend on y, then we have zy = 22 and so Ty{(b) = (a’a)b =
(aa)? for all b in G. That is, T, is constant, which contradicts (i).
Therefore, xy is essentially binary. (iii) Suppose to the contrary that
(G, -) has an idempotent element, say a. Note that a®a = ¢®>(¢®a) = a
and so {ax)(ay) = ({(d®a)2)(a*(c®a))y = z. In particular, a(ay) =
(eaa)(ay) = a. Putting au for  in x = (ar){ay), we obtain that
aw = (alau)Yay) = a{ay) = a and hence ¥ = {(ax)(ay) = aa = a, a
contradiction. (iv) By (iil), z° is essentially unary and z* # x. Assume
x?x = ¢, a constant. Then z = (")) ((v*(v%y))2} = (cx)({(vPc)z).
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Putting ¥ = ¢, we get © = {cx){(c?c)2) = (cx)(cz). Putting ¢ for
x and y, we have ¢ = c?c®. Putting ¢ for x in ¢ = x’r we have
c = {c*)%c* = cc®. Now putting ¢ for x in x = (cx)(cz), we have ¢* =
(cc*)(cz) = clez) and so ¢® = cc? = ¢, a contradiction to (iii). Thus
x2x is essentially unary. Now we show that x?x # x. Assume x%r = x,
then x = ((iy)aH(¥*(y*y))2) = (yxH(¥*y)?) = (yx)(yz). Putting x*
for y, we have x = {2°r)(x%2) and hence xr = (2%z)(x*x) = 7, a
contradiction to (ili). Thus x*r # z. Now assume r’r = z?, then
v = (P)2) (PE*)2) = (P0)(##9)2) and so

() 2 = (y"2") ((y*y")2).

Putting z for y and 22 for z in (), we have 22 = (x%2?)((x?2?)2?) =
(2222} ((x*)%2?) = (2%2*)(2?)?. Put z for y and (x?)? for z in (*),
then x? = (222%)((x%2?)(22)?) = (x%2H)a2? = (2*)%2? = (2%)?. That is,
x? is an idempotent element, which is a contradiction to (iii). Thus
2%z # 22 (v) We use induction on n. It is clear for n = 1,2 as (G, )
is proper. Let n > 3 and assume that ¢, are essentially k-ary for
1<k <n—1. By (A), we have

Gn—1(T2 s Tn1) = T2(x3(- - - (X210} -+ )
= [P (st (acrza) = G P0)2)
= {3y 22, 22) (V7 (1°9))2)-
By induction hypothesis, g,—, and hence g, depends on xs, -, Tp.
We also have
Go-1{T1, T2, -, Tp1) = (@2 (B2t} + -+ ))
= (@l (Tanal (PP )
= ga(@1, B2, Bums, (YY) Camr, (VP (7Y))2).
By induction hypothesis, ¢,_; and hence ¢, depends on x;. Thus g,
depends on all its variables. To prove f, is essentially n-ary for n > 3,
we first show that fz(x,y, 2) = (zy)z is essentially ternary. Assume fq
does not depend on z. Then (zy)=z = (uy)=. Putting (;zr?x)y for x and
(#*(x%r))z for y in this identity, we have [((x®x)y)({(z?*(z%x)))]z =
[u({z*(x*x*))2}]7, and so yz = [u{(x*(x*2x?))2)]z. This implies that =
does not depends on y, which is a contradiction to (ii). Thus, fs de-
pends on . Since y = ((F*x)y}x*(x®x))2) = filx?z,y, 2*(x*r)2) we
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infer that f3 depends on y. Using (A} again, we infer that f; depends
on z by the identity vz = (((#®2)w) (¥ y)v))z = fol(@Px)u, P (Py))v, 2).
Thus we have proved that f; is essentially ternary. Now, suppose 1 > 3
and assume that fp is essentially k-ary for 2 < k < n — 1. Observe
that, by the identity (A), we have

foo1(@ay iz, ) = fal(@?2)22, (2% (2%2)) 2, 18,y 10)
and  fn_o{x2, 14, yXn) = f?,,(:r?:r.,x-z?(x:z(:r2x))3,:r4,~- s T ).

Thus, by induction hypothesis, we deduce that f,, depends on all vari-
ables. That is, f, is essentially n ary for all n > 2. ]

COROLLARY 2.2. For a nontrivial Austin's groupoid (G, -}, we have
PG} > 2 for alln > 1.

LEMMA 2.3. Let (G,-) be a nontrivial Austin’s groupoid. Then we
have

i. For mappings ¢1,¢> + G — G, we have ¢1 = ¢o if and only if
d1{xy) = d2(xy) for all x,y € G. Here, xy can be replaced by f,
or ¢n for anyn > 1.
ii. For any a in (G, the mappings T, is not the identity mapping.
iii. The mapping n — T, s injective or there exists an integer m
such that T)'(x) =« for all x in G.
iv. The term (x%r)y depends on y and (x*x)y # y.

Proof. (i) Assume that ¢1{xy) = ¢d{xy). Putting (y%y)x for x and
(2 () z for y, we have ¢1(x) = ¢p(x). Further proof proceeds by
induction on the arity of the terms. (ii) Assume that T,{x) = x for
some a and all z € G. Then we have (a%a)x = x. Putting x = a%a we
see that a®a is idempotent, which contradicts Lemma 2.1(iii). Thus
T. # Id. (iii) Suppose the mapping n — T is not injective, then
T? = T* for some j < k. Then TF7(TI(b)) = THb) = TI(b) for all b
in G. Since T, and hence T7 is injective by Lemma 2.1(i), we see that
TF3(x) = x for all x in G. That is, TF7 = Id. (iv} The fact that
(r%x)y depends on ¥ follows from Lemma 2.1(i). If (x%x)y = y, then
(r*r)(r*x) = x®x, which contradicts Lemma 2.1(iii}). Thus (x®z)y #

Y.
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3. Proof of Theorem

In this section, we prove Theorem 3 by induction on the arity of
linear terms.

For n = 1,2,3, the conclusion follows by Lemma 2.1. Let n > 4
and assume that the assertion is true for all A-ary linear terms for
1 <k <n—1. Let f be an n-ary linear term. So, all variables in
f are mutually distinct. We have two cases: (1) f contains at least
two subterms of the form z,2; and {2} f containg only one subterm of
the form @;x;. Assume case (1) and so f containg subterms x;22 and
2324 after relabeling of variables if needed. Then, there are (n—1)-ary
linear terms ¢ and A such that

Fler. @, 20) = gl@122, @3, -+ - L 2n) = h(Z1, 22,2324, &5, + . Tn).

Then using (A) we have
f(((yzy)x'la (Uz(yzy))za X3y ?x??-) = g(x'lﬂ gy 1:Fn)

and ,f(xl,xz,(y23j)x3, (19'2(19’219’))2;3"5:“' ,Tn) = Ry, 2, @3, %5+, Tp).

Since ¢ and A are essentially by induction hypothesis, these identi-
ties show that f depends on all xy,22, -+ , x5, i€, [ is essentially
n-ary. Now, consider case (2). Since n > 4, f contains a subterm of
the form (xyz2)rs or w3(ryx2). There is a (n—1}-ary linear term g
such that f(xy, 22, ,2n) = g{x122, 73, -+ , ¥, ), and then we have
fl(Pyxy, PPz, 23, -+, T0) = glxy, 23, -+, @,). By induction ¢
depends on xy,x3, -+ , ¥y, and hence so does f. If f contains {x;x)x3
as a subterm, let f(z,, - - ,x,) = h{{z122)x3, 24, ,x,) for some
(n—2)-ary linear term h. Then f(v’y, z2. (VYD) 2,24, ,2,) =
h{xz, x4, -+ ,2,) and so f also depends on xs. If f contains za(zixs)
as a subterm, since g, is essentially n-ary by Lemma 2.1{v}, we may
assume that f is not of the form of g,. Then f is of the form

flay,may o wn) = - ([xl - (wal@a@n)) - )laegn) -
for some k > 3. Putting y*y for xx and {(*(v°y) )z for xx41, we have
by (A} that
f(i?l,xg, MR /4 S y2y? (92(929))‘2‘ Xty axn)
= (oo (mg{mame)) )
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where the right-hand side is a linear term without the variables
and zx41. By induction, f depends on each variables appearing on the
right-hand side, in particular on s as well. Consequently, f depends
on every variable it involves. This completes the proof.
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