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NIL SUBSETS IN BCH-ALGEBRAS

Young Bae Jun and Eun Hwan Roh

Abstract. Using the notion of nilpotent elements, the concept 
of nil subsets is introduced, and related properties are investi
gated. We show that a nil subset on a subalgebra (resp. (closed) 
ideal) is a subalgebra (resp. (closed) ideal). We also prove that 
in a nil algebra every ideal is a subalgebra.

1. Introduction

In 1966, Y. Imai and K. Iseki [8] and K. Iseki [9] introduced two 
classes of abstract algebras: BCK-algebras and BCI-algebras. It is 
known that the class of BCK-algebras is a proper subclass of the 
시ass of BCI-algebras. In 1983, Q. P. Hu and X. Li [5, 6] introduced 
a wide class of abstract algebras: BCH-algebras. They have shown 
that the class of BC I -algebras is a proper subclass of the class of 
BC H -algebras. They have studied some properties of these algebras. 
Certain other properties have been studied by B. Ahmad [1], M. A. 
Chaudhry [2], W. A. Dudek and J. Thomys [4]. In 1992, W. Huang 
[7] introduced a nil ideals in BCI-algebras. The present authors [13, 
14] studied some properties of this concepts. But nil ideals in BCH- 
algebras have not been studied yet. In this paper, we introduce the 
concept of nil subsets by using nilpotent elements, and investigate 
some related properties. We show that a nil subset on a subalgebra 
(resp. (closed) ideal) is a subalgebra (resp. (closed) ideal). We also 
prove that in a nil algebra every ideal is a subalgebra.
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2. Preliminaries

A BCH-algebra is a non-empty set X with a constant 0 and a binary 
operation “*” satisfying the following axioms:

(1) x * x = 0,
(2) x * y = 0 and y * x = 0 imply x = y,
(3) (x * y) * z = (x * z) * y

for all x, y, z in X.
In any BCH-algebra X , the following hold.

(4) (x * (x * y)) * y = 0,
(5) x * 0 = 0 implies x = 0,
(6) 0 * (x * y) = (0 * x) * (0 * y),
(7) x * 0 = x.

In what follows, the letter X denotes a BCH-algebra unless other
wise specified.

A non-empty subset S of X is called a subalgebra of X if x * y e S 
whenever x, y e S. A non-empty subset A of X is called an ideal of 
X if 0 e A and if x * y, y e A imply that x e A. Note that an ideal of 
a BCH-algebra may not be a subalgebra. An ideal A of X is said to 
be closed if 0 * x e A for all x e A.

For any elements x, y in X, let us write x * yn for (- . . ((x * y) * y) * 
•…)* y where y occurs n times.

3. Main Results

Definition 3.1. An element x in X is said to be nilpotent if 0*xn = 
0 for some positive integer n. An ideal A of X is called a nil ideal of 
X if every element of A is nilpotent. Inparticular, if every element in 
X is nilpotent, then X is called a nil algebra.

Lemma 3.2. For any x in X and any positive integer n, we have

0 * (0 * x)n = 0 * (0 * xn).
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Proof. The lemma is trivial for n = 1. Now let us assume that the 
lemma is true for a positive integer n. Then

0 * (0 * xn+1) = 0 * ((0 * xn) * x)
=(0 * (0 * xn)) * (0 * x)
=(0 * (0 * x)n) * (0 * x)
=0 * (0 * x)n+1,

ending the proof. 口

Lemma 3.3. For any x, y in X and any positive integer n, we have 

0 * (x * y)n = (0 * xn) * (0 * yn).

Proof. By (6), the lemma holds for n = 1. Now let us assume that 
the lemma is true for positive integer n. By using (3), (6) and Lemma 
3.2, we have

0 * (x * y)n+1 = (0 * (x * y)n) * (x * y)
=((0 * xn) * (0 * yn)) * (x * y)
=((0 * (x * y)) * xn) * (0 * yn))
=((0 * (0 * yn)) * xn+1) * (0 * y)
=((0 * (0 * y)n) * (0 * y)) * xn+1
=(0 * ((0 * y)n+1)) * xn+1
=(0 * (0 * yn+1)) * xn+1
=(0 * xn+1) * (0 * yn+1).

This completes the proof.

Let S be any non-empty subset of X. For any positive integer k, 
we define a k-nil subset on S as follows:

Nk(S) := {x G S | 0 * xk = 0}.

Theorem 3.4. If S is a subalgebra of X, then so is the k-nil subset 
Nk(S) on S for every positive integer k.

Proof. Let x, y G Nk(S). Then x, y G S, 0 * xk = 0 and 0 * yk = 0. 
Hence, by Lemma 3.3, we have that

0 * (x * y)k = (0 * xk) * (0 * yk) = 0 * 0 = 0

□
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and x * y e S because S is a subalgebra. Therefore x * y e Nk(S), 
which proves that Nk(S) is a subalgebra of X. □

Corollary 3.5. The k-nil subset Nk(X) on X is a subalgebra of 
X for every positive integer k.

Proposition 3.6. Let S be a subalgebra of X and let k be a 
positive integer. If x e Nk(S), then 0 * x e Nk(S).

Proof. If x e Nk(S), then x e S and 0 * xk = 0. It follows from 
Lemma 3.2 that

0 * (0 * x)k = 0 * (0 * xk) = 0 * 0 = 0

and 0 * x e S because S is a subalgebra. Hence 0 * x e Nk(S). □
The following example shows that the converse of Proposition 3.6 

may not be true.

Example 3.7. Let X = {0,1,2, 3} be a set with Cayley table as 
follows:

* I 0 12 3
0 0033
1 1032
2 2301
3 3300

Then (X; *, 0) is a BCH-algebra. We note that S = {0, 3} is a subal
gebra of X. Since 0 * (0 * 2)2 = 0 * 32 = (0 * 3) * 3 = 3 * 3 = 0, we get 
0 * 2 e N2(S) but 2 e N2 (S) because 2 £ S.

Theorem 3.8. Let A be an ideal of X. Then the k-nil subset 
Nk(A) on A is an ideal of X for any positive integer k.

Proof. It is clear that 0 e Nk(A). Let x*y e Nk(A) and y e Nk(A). 
Then x * y, y e A, 0 * (x * y)k = 0 and 0 * yk = 0. Since A is an ideal, 
we have x e A and

0 * xk = (0 * xk) * 0 = (0 * xk) * (0 * yk) = 0 * (x * y)k = 0.

Hence x e Nk(A), and therefore Nk(A) is an ideal of X. 口

Corollary 3.9. The k-nil subset Nk(X) on X is an ideal of X for 
any positive integer k.
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Note that, in a BCH-algebra, every closed ideal is a subalgebra([2]). 
Following Proposition 3.6 and Theorem 3.8, we have

Theorem 3.10. If A is a closed ideal of X, then the k-nil subset 
Nk(A) on A is a closed ideal of X for every positive integer k.

Theorem 3.11. Let S be a subset of X and let k and r be positive 
integers. If 시r, then Nk(S) C Nr (S).

Proof. If 시r, then r = kq for some positive integer q. Let x e 
Nk(S). Then

0 * xr = 0 * xk히 = (••- ((0 * xk) * xk) *•••) * xk = 0.

q times

This means that x e Nr(S), so that Nk(S) C Nr(S). 口

Corollary 3.12. For any positive integers k and r such that 시r, 
we have Nk(X) C Nr(X).

Proposition 3.13. Let S be a subalgebra of X. If x and y are 
nilpotent elements in S, then x * y is also a nilpotent element in S.

Proof. Suppose that x and y are nilpotent elements in S. Then 
there exist positive integers m and n such that 0*xm = 0 and 0*yn = 0, 
respectively. Let k = lcm{m,n}. Then mt = k = ns where s and t 
are positive integers such that (s,t) = 1. It follows from Lemma 3.3 
that

0 * (x * y)k = (0 * xk) * (0 * yk) = (0 * xmt) * (0 * yns) = 0 * 0 = 0.

Clearly x * y e S. Thus x * y is a nilpotent element in S. □

Corollary 3.14. If x and y are nilpotent elements of X, then so 
is x * y .

Theorem 3.15. Every X contains a maximal nil ideal which is also 
a subalgebra of X.

Proof. Let N(X) := {x e X | xis a nilpotent element}. Clearly 
0 e N(X). Assume that x * y e N(X) and y e N(X). Then there 
exist positive integers k and r such that 0 * (x * y)r = 0 and 0 * yk = 0. 
It follows from Theorem 3.11 that 0 * (x * y)kr = 0 and 0 * ykr = 0,
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that is, x * y e Nkr(X) and y e Nkr(X). By Corollary 3.9, we get 
x e Nkr(X) C N(X). Therefore N(X) is an ideal of X. Now we show 
that N(X) is a subalgebra of X. Let x,y e N(X). By using Corollary 
3.12, we can assume that x, y e Nk(X) for some positive integers k. It 
follows from (1), (3) and Proposition 3.6 that (x*y)*x = 0*y e Nk(X). 
Since Nk(X) is an ideal of X, we conclude that x * y e Nk(X) and 
hence Nk(X) is a subalgebra of X. 口

Finally we give a condition for an ideal to be a subalgebra.

Theorem 3.16. In a nil algebra, every ideal is a subalgebra.

Proof. Let A be an ideal of a nil algebra X and let x, y e A. Then 
there exists a positive integer n such that 0 * yn = 0, i.e.,

(... ((0 * y) * y) *•.•) * y = 0 where y occurs n times.

Since A is an ideal, it follows that 0 * y e A so that (x * y) * x = 
(x * x) * y = 0 * y e A. Hence x * y e A, ending the proof. 口
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