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COSYMPLECTIC SUBMERSIONS WITH VANISHING
COSYMPLECTIC BOCHNER CURVATURE TENSOR

JIN Ho CHoI1, TAE HO KANG AND HYUNSUK Kim

ABSTRACT. We study cosymplectic submersions with vanishing
cosymplectic Bochner curvature tensor.

1. Introduction

Let M and B be C* Riemannian manifolds. By a Riemannian
submersion we mean a C* mapping 7 from the total space M onto
the base space B such that 7 is of maximal rank and the differential
7. of m preserves the lengths of vectors orthogonal to the fibre 7=1{x)
for all x € B.

The theory of Riemannian submersions was initiated by O'Neill®
and Gray*. A systematic exposition could be found in the A. Besse's
book!. Presently, there is an extensive literature on the Riemannian
submersions with different conditions imposed on the total space and
on the fibres. In particular, B. Watson announced interesting results
about almost Hermitian submersions!! and two kinds of almost con-
tact metric submersions'?

On the other hand, B. H. Kim® and K. Takano® have investigated
Riemannian submersion with Sasakian structure such that the contact
Bochner curvature tensor of the total space vanishes identically. Also,
K. Takano'® has investigated Kahlerian submersions with vanishing
Bochner curvature tensor.
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The odd-dimensional counterpart of Kahlerian manifolds is cosym-
plectic manifolds. The canonical examples® of cosymplectic manifold
are given by the product of a Kahlerian manifold with R or with the
circle S1.

In this context, we study cosymplectic submersions with vanishing
cosymplectic Bochner curvature tensor.

2. Riemannian Submersions

B.O'Neill® has characterized the geometry of a Riemannian sub-
mersion x© : M — B in terms of the tensor fields T and A defined for
vector fields ' and F' on M by

TEF = HVVEVF + VVVEHF and AEF = HVHEVF + VVHEHF,

where V is the Levi-Civita connection of metric ¢ of M, the symbols
V and H are the orthogonal projections of the tangent bundle T(M)
of M onto the vertical distribution V(M) and horizontal distribution
H{M) in the tangent bundle T'(3), respectively. T is related to the
second fundamental form of fibres, it is identically zero if and only
if each fibre is totally geodesic. We call the Riemannian submersion
with totally geodesic fibre if T vanishes identically. Also, since A is
related to the integrability of H(M), it is identically zero if and only
if H(M) is integrable. Moreover, if A and T vanish identically, then
the total space is locally a product space of the base space and fibre.

We call a vector field X on M projectable if there exists a vector
field X, on B such that 7,(X,)} = X.x(p) for each p € M, and say
that X and X, are w-related. Also, a vector field X on M is called
basic if it is projectable and horizontal. Then we havel:®

LEMMA 2.1. If X and Y are basic vector fields on M which are
n-related to X, and Y, on B, then
(1) g(X,,Y.) = ¢{X,Y)} ox, where g is the metirc on M and g the
metric on B,
(2} H[X,Y] is basic and is m-related to [X,,Y,],
(3} HVxY is basic and w-related to %X*Y*, where V is the Rie-
mannian connection of B.
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LEMMA 2.2. Let X and Y be horizontal vector fields, U and V
vertical vector fields. Then

(2.1) VoV =Ty V + ViV, VuX = HVy X + Tu X,

(2.2) VxU = AxU + VVxU, VY = HVxY + AxY.
Furthermore, if X is basic, HVu X = AxU.

Next, we denote by R the curvature tensor of ¢, by R the collection
of all curvature tensors of the Riemannian metric § on the fibre and
by R{X,Y)Z the horizontal vector field such that =, {(R{X.Y)Z) =

R, X, 7, Y)m. Z at each p € M, where R is the curvature tensor of ¢
on B. Then we havel®

LEMMA 2.3. Let U, V, W, W’ be vertical vector fields, and XY, Z, Z'
horizontal vector fields, Then

JRU VYW, W) =¢(R(U, VYW, W") + ¢(TyW, Ty W’

2.3
( ) — 4 (TV E’V, TU Hrﬂ),

(24)  g(RUVIW. X) = g((VeT)v W, X) — g(VvT)oW. X),

g(RIX, Y V)=¢{(VxTuY. V) — ¢((Vu A)xY)
+ Q(TUX, Tvl’r) _ g(A_‘(U, AyV)?

g(RUV)X.Y) =g(VuA)xV.Y) — g((Vv A)xU,Y)
(2.6) — (AU, AyV) + ¢(AxV, Ay D)
+ g(TU)(? TV}/) - g(TV)(, TU}/),

HRIX.Y)Z,U) = — g(V3A)x Y. U) — g{AxY. Ty 2)
+ ¢(Ay Z,TuX) + g{Az X, TuY),
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HR(X.Y)Z,Z') =g(R(X.Y)Z.Z') + 29(AxY, Az Z")

(2.8)
- g(AyZ? AXZ’) + g(AXZ? Aer),

Also, we get®

H(VeA)xY, V) + g((Vy A)xY,U)
= g((VyT)eV, X) — g{(VxT)yV.Y).
For each p € M, we denote by { X, X5,-++ , Xy, } and {Uy, Uy, - - , Uy}

local orthonormal basis of H{M) and V(M), respectively. Then we
define!

(2.9)

(210)  g{Ax. Ay) =D g(AxXi. Ay Xs) = > g(AxUs. AyUs),

1=1 a=1

211)  g(Ax, To) =Y g(Ax X, TuXs) = > g(AxUa, Tulla),

=1 a=1

(212) (T Tv) =) _o(TuXa. TvXe) = ) 9(Tula. Ty Us),

1=1 a=1

(2.13) g(AU, AV) = g(Ax,U, Ax,V)
=1
(2.14) g(TX.TY) =Y g(Tv, X, Tu,Y)
=1
(2.15) 9(VuTh, Tw) = > g((VuTWvUa, TwUa),

a=1
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s

(2.16) H(VXT)Y,TZ) = g(VuT)0.Y, Ty, Z),

a=1

(217) A== (VA 6T=-> (Vo 4.
=1 a=l1

Moreover, we define the symmetric tensor 67T by

(218) IO V) =3 g((Vx DoV, X))

i=1
for vertical vector fields U/ and V. Also, the mean curvature vector
along each fibre gives the horizontal vector field

(2.19) N=> Ty,U
a=1

If N is identically zero, then each fibre is called a minimal subman-
ifold of M.

Let Ric, Ric and Ric be the Ricci tensors of the Riemannian metrics
¢, g and g, respectively. Then we have!

(2.20) Ric(U, V) = Ric(U, V) — ¢(N, Tu V) +g(AU, AV) + GT)U. V),

(2.21) Ric(X, U} =¢((6T)U, X) — ¢((0 A)X, U)
‘ —2¢(Ax, Tv) + ¢(VuN. X),
Ric(X,Y) =Ric(X,Y) — 2¢(Ax, Ay) — g(TX,TY)

(2.22) 1
+5{9(VxN,Y) + g(Vy N, X)},

where Ric is the horizontal symmetric 2-form on M such that
Ric(X,Y) = Rie{n, X, 7,Y ).



116 JIN Ho CHol, TAE Ho KaNa aND HYUNsSUK KIM

Moreover, if 7, 7, 7 are the scalar curvatures of the Riemannian metrics
¢, ¢ and g, respectively, then

(2.23) r=7+4+7—2N—|N|* = |A]? - |T]?,

where we denote 7o m by 7 simply and we put |N|?> = g(N, N},

(2.24) AP =" g(Ax, Ax) = > 9(AUa, AUL),
i=1 a=1

(2.25) TP =" g(TX.TX:) =Y g(Tu.. Tu).
=1 a=1

3. Characterizations of Cosymplectic Submersions

Let (M, ®,&,1,9) be an almost contact metric manifold. Then,
we have

(3.1) ¢* =—I+n0¢& n(&) =1, g(¢X.¢Y) = g(X.Y) —n(X)n(Y),
for any vector fields X and Y on M. From (3.1}, we deduce that

(3.2) ¢ o ="0and n{X) = ¢(X,),

for any vector field X on M. An almost contact metric manifold
(M, @.£.1.g) is said to be integralbe if [¢, d| + 2dn2 & = 0 and cosym-
plectic if it is integrable, dn = 0 and d® = 0, where the fundamental
2-form ® of M is defined by ®{X.Y) = ¢{ X, ¢Y) for any vector fields
X, Y on M. It can be shown that the cosymplectic structure is chara-
terized by

(55) qu‘) ={ and VX?} = U?

where V is the connection of the metric g{for details, see®™12).
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Let M and B be the almost contact metric manifolds with an almost
contact metric structure {¢, &, 1, ¢} and {$,£,7.9), respectively. Let
7 : M — B be a Riemannian submersion which satisfies

mdE = ¢ B, and m.&=¢,
where E is a vector field on M. Then 7 is said to be a cosymplectic
submersion if the total space M is cosymplectic.

[t is clear from definition that the vertical and horizontal distribu-
tions determined by a cosymplectic submersion 7 are ¢-invariant, that
is, p{V(M)} C V(M) and ¢p{H{M)}} C H{M}, and the base manifold
B inherit a cosymplectic structure from the total space M. Moreover,
B.Waston'? proved that the horizontal distribution is integrable(i.e.,
A =0), and each fibre is minimal(i.e., N = 0){for details seel?)

3.1. Cosymplectic Submersions with Constant ¢-Sectional
Curvature

For a cosympletic manifold 3f of dimension 2n+ 1, the Ricci tensor
has the following properties.

Ric{¢pE, ¢pF) = Ric(E, F), Ric(E,£) =0
for any vector fields F and F on M.
A plane section in T,M is called a ¢-section if there exists a unit

vector E in T,M orthogonal to € such that {E, ¢E} is an orthonormal
basis of the plane section. Then the sectional curvature K(FE, ¢F) =

g(R(E,pE)¢E, E) is called a ¢-sectional curvature. It has been shown?

that if a cosymplectic manifold M is of constant ¢-sectional curvature
¢, then

9(R(Er, B2) By, Ey) = —2{ 9(Er, B)g(Ez, Bo)
— 9{E1, Eq)g(Es, E3) + g(¢En, E3)g(pL, Ey)
(3.4) — g(9En. Eq)y(PEs, B3} + 29(¢En. Br)g(dEs, Ey)
— n(ENn(Ea)g(Ba, Ba) + n(E2(Es)g(Ey, Ea)
+0(En(E)g(Bz, Ba) - n{E2)n(Eq)g(Ey, Es) }
for vector fields E; (1 = 1,2,3,4) on M.

.
i
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Next we define® the so-called cosymplectic Bochner curvature tensor
B¢ and n-Einstein tensor Q) on M, respectively, by

g(B(E\,Es)Ea, Ey) = g(R(E), E))Es, Ey)
+ m{g(a, Ea)Ric( By, Eq) — ¢(Es, Ea)Ric(E\, Ey)

+ g( By, Eg)Ric(Ey, B3} — g(E1, Ey)Ric(Ey, By)

+ g(9E, B3)S{Ea, By) — g(¢F2, E3)S(E), By)

+ g(QE2, E)S(E), Es) — g(9Ey, Eq)S(Es, E)

+ 2g(QEL, E2)S(Es, Ey) + 2g(OEs, Ey) S(Ey, E2)

+ n(E)n(EyRic(By, By) — n(Ey)n(Ey)Ric( By, By)

+ 0(Ba)n(Bs)Ric(By, Ba) — n(By)(Bs)Rie(Ba, Bu) |

T DT 9B Be(By, Ba) — g(B, Eg(Er, By)

+ g{DEL, E3)g(@Es, Ey) — g(¢Es, E3)g(@Er, Ey)
+ 2¢(QF\, BEs)g(dEs, By)
+ (BN Ea)g{Ea, Es) — n{E2)n(Ey)g(EL, Ea)

+ ()i Ea)g (B, Ba) = n(Enn(Ea)g (o, Bu) }

and

Q(E, F) = Ric(E, F) = 3—g(E, F) + 5—n(E)n(F)

for vector fields E; (1 = 1,2,3.4), E and F on M, where S(E;, E;) =
Ric(¢pF;, E;) and 1 denote the scalar curvature on M. A cosymplectic
manifold M is said to be cosymplectic Bochner flat(n-Einstein resp.)
if B = 0(Q = 0 resp.). A cosymplectic manifod M is of constant
¢-sectional curvature if and only if B = 0 and ¢} = 0 hold.

Next, we will seek fundamental equations of a cosymplectic sub-
mersion 7 : M — B, where dimM = 2m + 1 and dimB = 2n + 1.
Since the horizontal distribution is integrable (A = 0) and each fiber
is minimal (N = (), equations (2.3)-(2.9} are rewritten as follows:
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J(RU, VW, W) =g(R(U V)W, W) + ¢(TeW. Ty W'

3.5
( ) — g (TV I’V, TU Hfﬂ)?

(3.6)  g(RWUWVIW X) = g((VuTWW. X) — g((VvT)uW, X},

(3.7) g(R(X, DY, V) = g(VuTWW, X) + ¢(Ty X, T/Y),

(3.8) gRUVIXY) = g(Tu X TvY) — g(Tv X, TyY),

(3.9) ¢(R(X,Y)Z.U) = 0,
(3.10) g(R(X,Y)Z,Z') = g(R(X,Y)Z, 2",
(3.11) H(VyT)eV, X) — g{((VxT)yV. Y} =0

for vertical vector fields U/, V, W, W’ and horizontal vector fields X, Y, Z, Z".
Let { X1, X, -, Xan, Uy, Usy - -+, Uss, €} be alocal orthonormal frame
on M such that {X;, X, -+, Xop, Xopt1 = &} and {Uh, Uy, -+ U},
are local orthonormal bases of H(M) and V(M), respectively, where
Xopi=0Xi(1=1,2,--- ,n)and Usyo = ¢Ua{@ = 1,2, , s}, where
we have put ¢U = VoU for any vertical vector field U € V(M) and
each fibre is of dimension 2s.
By virtue of A =0 and N = 0, we get from (2.20)-(2.23)

(3.12) Ric(U, V) = Ric(U, V) + (3T){(U, V),
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(3.13) Ric(X, V) = g((0T)U, X),
(3.14) Ric(X,Y) = Rie(X,Y) — ¢(TX,TY),
(3.15) r=7+7-|T]

Also, we define skew-symmetric tensors S, Sand S by S{(E, F) =
Ric(¢pE, F), S(X,Y) = Ric(¢X,Y) and S(U, V) = Ric(¢U, V), respec-
tively. Then we obtain from (3.12)-(3.14) that

(3.16) S(U.V) =S(U, V) + (0T)(9U, V),
(3.17) S(X, V) = g((dD)U, p X),
(3.18) S(X.Y) =S(X,Y) — g(T$pX,TY).

From {3.12), we have

(3T)(U, V) = Ric(U, V) — Ric(U, V)

(3.19) = Ric(pU, ¢V) — Ric(olU, ¢V)
= (0T)(9U, V).
Since ¢?U = —U, we also obtain

(VT dV = Vx(TgudV) — ToygudV — Tou(VxgV)
(3.20) = Vx{¢*TuV) — $*To oV — $*Ty(Vx V)
= —(VxT)oV.
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From this, we get immediately

(3.21) (6TYHQU, $V) = —(4T)(U, V).
Using {3.19) and (3.21), we get

(3.22) (TY(U, V) = 0.

PROPOSITION 3.1. Let 7 : M — B be a cosymplectic submersion.
If the total space M is of constant ¢-sectional curvature, then each
fibre is an Einstein manifold.

Proof. (3.12) and (3.22) yield Ric(U,V) = Ric(U,V). Thus we
obtain from (3.4) that

Ric(U, V) = Ric(U, V)
23 2n+1
= g(RU., U)WV, Ua) + > g(R(X:,. U)V. X,)
a=1 1=1

cn+s+1 ,
dntstow),

where we have used n(U,) = {X;) =0{a=1,---,2s,i=1,--+,2n)
and 7(Xsn41) = n(g) = L. O
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3.2. Cosymplectic Submersions with Vanishing Cosymplec-
tic Bochner Curvature Tensor

Now we shall consider 7 : M — B a cosymplectic submersion with
vanishing cosymplectic Bochner curvature tensor. Then we see from
(3.5)-(3.14), (3.17)-(3.19) and (3.22) that g(B(E}, E;}F3, Ey) = () is
equivalent to the following equations (3.23)-(3.28) for horizontal vector
fields X, Y, Z, Z’ and vertical vector fields U, V', W, W"

JRU YW, W) + g(TuW, Ty W) — ¢g(TyW, Ty W)

1 S —
—_— }r A7 ic{V 1 AT A VAR Y. V4 e i i
R {g({ ,W)RIc(V, W) — ¢(V, W)Ric(U, W)

+ g(V, WHRic(U, W) — g(U, W"Ric(V, W)

+ g(@V, W)IS(U, W} = g(¢V, WS(U, W)
(3.23) T 9@V, WISW, W) - g(¢U, W)S(V, W)

+ 29(dU, VIS(W, W) + 2g{¢W, WS(U, V)}

i
- T Wg(V, W) — g(V, W)g(U, W'
T DD 1 WeV W) = gV, W)g(U, )

+ g(@U, W) g(dV. W) — g(gV, W) g(pU, W)
+ 2g(BU, V) g (W, W’)} —0,

g((VUT)V E’V, ){) - g((VVT)U E’V, ){)
L 7 3 bs FaR ¥ V4 N s
ST 190 WS BTIV,X) = gV, W)g((T)V, X)
+ (U, W)g((8T)V, ¢X) — g(¢V, W)g((6T)U, $X)
+29(U,V)g(GTIW, X) } = 0,

(3.24)
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) 1
g{(VuT)W, X) + g(Tu X, TvY ) + 2(m + 2)
X [g(X, YYRI(U, V) + g(U. V) {ﬁi‘é(x, Y) — ¢(TX, TY)}

(3.25) 1 ¢(oX,Y)S(ULV) + ¢(dU. V) {%(A V) — ¢(ToX. TY)}

O] - e

X g(U,V) + 96X,V )g(dU, V) = n(Xm()g(U, V) } =0,

g(TUX?TVY) - g(T‘(,uY, TUY) + ( )

(3.26) * [9(U.V) {g(X )= g(ToX,TY) }+ g(¢pX,Y)

xS, V)] T 2(m+ 1;(?11 +2) {ouvgex. )} =

ST I D9ETIVY) = oY, 2)g(@TIV,X)
(3.21) Tk, Z)g((6TYU. ¢Y) — g(¢Y. 2)g((ST)U, ¢ X))

+ 20(¢X,V)g((FTIU,62) + n(Y Jn(Z)g((FT)U, X)

- (X)n(2)g(@GT)UY) | =0,
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1
2(m + 2)

x |9(x, 2) {Rie(Y, 2) - g(TY, TZ) } - 9(¥, 2)

x {ﬁi};(x, 7'y — ¢(TX, TZ’)} v g, 2') {ﬁi};(x, 7)
—y(TX,T2)} — ¢(X, 7' {ﬁ}};(y, 7y — g(TY,TZ)}
+9(6X. 2) {8(Y.2) - (TY.T2) | - 9(9Y. 2)

X {§(X, 7') — g(ToX, TZ’)} + g(oY, Z') {§(X, )
—g(TYX,TZ)} - 9(¢X, 2) {8(Y, 2) - g(T¢,T2)}
+ 29(¢X,Y) {Q(Z? 7" —g(ToZ, TZ’)} + 2¢(¢Z, Z")
< {S(X,Y) - g(@oX, V) } + 5(Xm(Z') {Ric(v, 2)
—(TY,TZ)} - n(Y 0(Z) {Rie(X, 2) — g(TX, TZ) }
+ (Y n(2) {Rie(X, 2') - g(TX, T2} } = (X )n(Z)

C Am+ D(m+2)

X {PEE(Y, 7' — (TY, TZ’)}

«{ 9(X, 2)9(Y, 2y = 9(¥, 2)9(X, Z') + g(¢X, 2)

x g(9Y, Z") — g(9Y, Z)g(¢ X, Z') + 29(¢X,Y )g(¢Z, Z')
+ (X2 g(Y, Z) — (Y I Z")9(X, Z)

F (Y Z)gX, Z) = n(X)n(Z)g(Y, Z) } = 0.

Interchanging both X and Z with ¢Y, we get from (3.27)
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0 =g(¢Y,¢Y)g((OT)U,Y) = g(¢Y,¢Y )g((ST)U, $°Y)

— 29(¢Y, ¢Y)g((3T)U, ¢°Y)
=4g(gY, ¢Y )g((6T)U.Y) — 30(Y )g(¢Y . Y )g{(6T)U. &)
=4g(9Y, ¢Y )g((6T)U.Y)

because of g({0T)U,€) = 0, which implies that

(3.29)

$((3TYU.Y) = 0.

Thus, equation {3.24) can be simplified as

(3.30)

d(VoT W W, X) — g(Vy Tl W, X) = 0.

From (3.28), we have

(3.31)

that is,

(3.32)

n+1
0=> g(B(X,Y)Z, X))
=1
— Ric(Y, Z) L (2n + 2) {?'(Yr Z)
= PG, 2(m+ 2) " B

LTV, TZ)} + (5 - |T|2){g(¥, z)- ??(Y)W(Z)}]

-
+ 2(m+ 1}{m + 2)

(n+ 1){901 z) - n(Y)n(Z)}?

sRIic(Y, Z) + (n+ 2)g(TY, TZ) — (+ - |T?)

X {g(Y,Z) - '!}(Y)T}(Z)} + H

9 {gm 7)- n(Y)n(Z)} —o.
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Interchanging both ¥ and Z with X; and taking a sum from 1 to
2n, we get,

o n+s+1 . .
(f‘bf‘bf‘b) T = m {(?1 - S)T - 2(?} ‘I‘ 1)|T|2} N

which together with (3.32) implies

SRic(Y. Z) + (n + 2)g(TY.TZ) — (# — |T|2){ (Y. 2)
_ n(}’)n(Z)} + )in [n— )7 — 20n + DIT?
(3:34) x{mxzr—mym&n}
= sRie(Y, Z) + (n + 2)¢(TY. T Z)

- % {s7 + (n+ 2T} {9(3’; Z) - n(}’)n(z)} _0.

Thus, we have

s

+ 2

st + (n+2)|T)?
2n(n + 2)

Ric(Y, Z)

¢TY,TZ) = —
kA
(3.35)

{mxzwwMﬂmm}‘

Substituting (3.35) to (3.28) yields
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9(B(X,Y)Z,2') = (R(X,Y)Z,Z')

_|_

1 P e
TE¥Ey {9(X, 2)Ric(y, 7') - (¥, Z)Ric(X, Z')

+ ¢(Y, Z)Ric(X, Z) — ¢(X, Z)Ric(Y. Z)
+9(¢X, 2)S(Y, Z') — g(¢Y, 2)S(X, Z')

+ g(¢Y, Z)S(X, Z) — g(¢ X, Z)S(Y, Z)

+ 20(d X, Y)S(Z, Z") + 29(p 2. Z')S(X.Y)

+ (X )n(Z")Ric(Y, Z) — p(Y (2" Rie(X, Z)
+ (V) 2)Rie(X, Z') — 5(X)n(Z)Ric(Y, Z’)}

1 s7+ (n+ 2)|T)? o
2(m+2) n(n + 2) 9(X. 2)g(Y, 2)

- g(}/a Z)g(JY* ZF) + g((ﬁj{‘ Z)y((ﬁ}/‘ ZF)
- 9(oY, Z)g(d X, Z'} + 29(¢p X, Y )g(¢Z, Z')
+ (X ZYg(Y, Z) — n(Y (2 y(X, Z)

F O m(Z)g(X, Z) = n(X)n(Z)g(Y, Z')}

T Vs ! _ s !
by {g(X, 2)4(¥, ') - g(Y, Z)g(X, Z)

+ 9(¢X. Z2)g(¢Y. 2"y — (oY, Z)g(¢ X, Z")
+20{ X, Y)g(0Z, Z"y + n{ Xn(Z")9(Y, Z)
—n(YI(Zg(X, Z) + n(Y I 2)y(X, Z')

_aXON(Z)e(Y, Z) }] ‘
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Here, calculating the second coeflicient of this equation, we get from

(3.33)
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1 {8% + (n+ 2)|T? LT }

2(m + 2) n{n + 2) 2(m + 2)
1 st + (n+ 2)|T)* T
S 20m +2) n{n + 2) 2n{n + 1)

g {(” —S)T=2nt 1)|T|2}]

! 2s(n+ 1)+ {(n+ 2)(n — s) . 17 |7
S 20m +2) 2n(n + 1}{n+2) n n

(3.37)

1 (m+ 2)7
_ﬂm+m{ﬂn+nm+m}
B T
Cd(n+ Din+ 2),
which together with (3.36) leads to the following

THEOREM 3.2. Let # : M — B be a cosymplectic submersion. If
M is cosymplectic Bochner flat, then B is also cosymplectic Bochner
flat.

PRrROPOSITION 3.3. If 1+ M — B is a cosymplectic submersion
with vanishing cosymplectic Bochner curvature tensor, then we get
mrn T s S 0, the equality holds if and only if the submersion
has totally geodesic fibres.

Y . : . : . r 7 nt2s42 2

Proof. Fmﬂm (&15)_@11(1 (3.33) we get e temt _,:;r(sf:_r“ 7| =
0, and so m + SL;T < 0. It is clear from this that the equality

holds if and only if |T]* = 0. O
PROPOSITION 3.4. Let 7 : M — B be a cosymplectic submersion
with vanishing cosymplectic Bochner curvature tensor. Each fibre is
an Einstein manifold if and only if g(Tv,Tw) = J%; g(V,W)ifs> 1.
Proof. Suppose that each fibre is an Einstein manifold. Then we
have Ric(V,W) = cg{V,W). On the other hand, from (3.23) with
N =0, we get
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2nRic(V, W) + 2(n + s + 2)g(Tv, Tw)
(3.38) (ro Lol
(n+s+1)
It follows from {3.32) and (3.36) that

tg(V,W) =0.

1 .
(s+1)7r =— ;{(nz +n—s®—s)T
+ (n+ s+ D(n+s+2)[T°},
Substituting this into (3.38) yields

nRic(V.W) + (n+ s + 2)¢(Tv. Tw)
(3.39) 1. ) i
— —{nF+(n+s+2)|TI}g(V.W) =0,
b

which implies that

|"Ijl2 7 4
Q(Tv, TI,.{/) = W y(I/, W )
Conversely, suppose that ¢(Tv,Tw) = % g(V,W). Then we get
from (3.37)

Ric(V, W) = §g(vz W),
8§

which completes the proof. O
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