East Asian Math. J. 22 (2006}, No. 1, pp. 79-91

RELATIONS BETWEEN DECOMPOSITION
SERIES AND TOPOLOGICAL SERIES
OF CONVERGENCE SPACES

SANG HO PARK

ABSTRACT. In this paper, we will show some relations between
decomposition series {7%¢ : o is an ordinal } and topological
series {7oq : @ is an ordinal } for a convergence structure ¢
and the formular ﬂ"@('ro,q) = ﬂ"“’a’@q, where w is the first limit
ordinal and « and 8{> 1) are ordinals.

I. Introduction and Preliminaries

A convergence structure ¢ on a set X defined by [1] in 1964 is a
function from the set F(X) of all filters on X into the set P(X) of
all subsets of X, satisfying the following conditions:

(1) x € g(x) for all x € X

(2) F < G implies ¢(F) C ¢(F);

(3) « € ¢(F) implies « € ¢(F N i),
where & denotes the principal ultrafilter containing {x}; F and G
are in F(X). Then the pair (X, ¢) is called a convergence space. If
x € q(F), then we say that F ¢-converges to x. The filter V, ()
obtained by intersecting all filters which g-converge to x is called the
g-neighborhood filter at x. If V,(x) g-converges to x for each x € X,
then ¢ is said to be pretopological and the pair (X, q) is called a
pretopological convergence space.
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Let C(X) be the set of all convergence structures on X, partially
ordered as follows:

g, <gq, ff ¢ (F)Cq (F)foral Fec F(X).

If g, <g,, then we say that g, is coarser than ¢,, and ¢, is finer
than ¢,. By [2], we know that if ¢, is pretopological, then

g, <q iff Vy (2) SV, (x) forallz e X.

For any ¢ € C(X), we define a related convergence structure 7(g),
as follows:

xz € m(g{F) iff V,(x) <F.

In this case, 7{g) is called the pretopological modification of ¢.
In 1973, Kent and Richardson [3] introduced the associated de-
composition series {7%¢ : « is an ordinal } defined by

g F) L x = Vi(x) £ F, for each F € F(X),

where
AeVi(z) <= relj(4), and

I(I371(A)), if a—1 exists,

Np<al?(A),  if o is a limit ordinal.

= |

In 1996, Park [4] studied the n-th pretopological modification 7™¢
and quotient map for a convergence space ¢.

In 1999, for a convergence space (X, ¢) with a second convergence
structure p, Wilde [5] introduced that (X, q) is “p-topological” iff
F L 2 implies V,(F) % . Also they showed that there is a finest
p-topological convergence structure 7,g on X coarser than ¢ and
F 2% 4 iff there exist G % x such that F > V;‘(g), for some
n € N. Furthermore, they induced the topological series for ¢, the
descending ordinal sequence {r.,q : « is an ordinal } defined recur-
sively on X as follows:
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T =4q
mg : F—%z < 3G -2 and n € N such that F > VI(G)

Tq : F =% 3 <= 3¢ —% rand n € N such that F > Ve (G)

Taq + F—% ¢ = 3¢ % x and n € N such that F > Vi (9)

Tag @ F % ¢ <= 3¢ L 2, nec Nand 3 < a such that

F >V .(6).

In this paper, we will show some relations between decomposition
series {7%¢ : « is an ordinal } and topological series {7,¢ @ « is an
ordinal } for a convergence structure ¢ and the formular 7%(r,q) =
7«"Pq, where w is the first limit ordinal and « and 3(> 1) are ordi-
nals.

2. Decomposition Series, the Neighborhood and Interior
Filter of a Filter

We shall summarize some results from [3] and other sources using
more modern notation and terminology. we are mainly interested
in comparing properties of decomposition series with those of the
topological series, which will be introduced in [3].

Let (X,q) be a convergence space. For A C X, we recall that
IQ(A) = A, I; =I,(A)={z: AcV,(2)}

Given an ordinal number o« > 1, let [ g and cl? denote the ath
iterations of interior operator and closure operator for ¢, respectively.
For A C X, we inductively define:

1°(4) I(I$71(A)), if ar— 1 exists,
¢ B ﬂl{;kaIf(A), if o is a limit ordinal.

cla(cly™1(A)), if a— 1 exists,
cly(4) = 3 e :
Ugcalcli(A)), if ais a limit ordinal.
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PROPOSITION 2.1. ([5]). For every ordinal o« and A C X, X \
cg(A) = IT(X\ A).

If (X, q) is a convergence space and o > 1, let m®¢ be the pre-
topology on X whose neighborhood filter is V' (), that is, Vyag(2) =
Vi(x), where A € Vi(x) iff x € IJ(A). Since § < « implies

o 3 : - af, 37, , \
IZ7(A) C I (A), it follows that V(x) < Vi(x), and consequently
?Taq S 7].,{_3(1"

Definition 2.2. ([3], [5]). The descending chain {n%¢: a > 1} of
pretopologies on X is called the decomposition series of (X, q).

Clearly nlq = mq is the pretopological modification of ¢, which is
the finest pretopological convergence structure on X coarser than q.

Definition 2.3. ([5]). For any ordinal o, p € C(X) and G €
F(X), we define the neighborhood filter V,,(G) and the interior filter
I,(G) of G, respectively, as follows:

V;(G) =V,(0), V(9 ={AC X [}(4)eq}
I(9) = 1,(G), I}(G) ={L(G):GeGifI,(G)#£0, VG e g,
where [B] means the filter generated by B if B is a a filter base.

Then we know that if & < 3, then V‘.E(Q) SVRG) <G SIXG) <
#(9).

PROPOSITION 2.4. For any ordinals «, 5, x € X and A C X,

(1) I2+2(4) = I3 (13(4).

(2) VitP () = Vg (% ().

Proof. (1) Let « be a fixed ordinal. We use transfinite induction
on . If =1, I¢t! = [(I3(A)) follows by definition. Next, let 3
be any arbitrary ordinal. ) )

Case 1. Assume that there exists 8 such that 34+ 1 = 8. By
the induction hypothesis, I8 (A) =1 B(I(A4)), and so IZTP(4) =
IgHHH(A) = LU (A)) = LUIJ(IZ(A) = I (I3(A)).

Case 2. Assume that @ is a limit ordinal. I, (‘;”Jr-‘e(A) =Nyl (A) =
ﬂ~f<,.r313(f(?(x4)) = I(?(I?(A))
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(2) A eﬁvgw(;x) = z € ;’;‘Jfﬁ(A) = relf(ix4) <=
IDA) e Vi(z) = AeV;(Vi(x)). O

COROLLARY 2.5. For any ordinals o, 3, and F € F(X),
(1) IS¥P(F) = IP(IS(F)) if these are filters.
(2) ViHP(F) = Vg (VI (F)).

3. p-Topological Convergence Spaces

In this section, we will surnmary some propositions about p-topological
convergence space of [3] and [6], and change two propositions, which
are the following Theorem 3.4 and 3.7.

Henceforth (X, q) means a convergence space equipped with a
second convergence structure p.

Definition 3.1. ([5]). A convergence space (X, q) is p-topological
iff 7 —% 2 implies that there exists a G — x such that F > I(G).

PROPOSITION 3.2. ([5]). (X,q) is p-topological, iff F -4 ¢ —
Vo(F) L .

PROPOSITION 3.3. ([5]). Let (X,q) be a pretoplogical conver-
gence. Then (X, q) is p-topological iff V,(x) = I,(V,(x)).

Proof. (=) Since V,(z) —= x and (X, q) is p-topological, there
exists G — x such that V,(x) > I,(G). Then G > V. (), so G >
I,(G). This implies G = V,(x) = I,(G) = L,(V,(x))

(<) Let F =% r. Then F > V,(z) = I,(V,(x)). Thus, (X,q)
is p-topological, since V,(x) — x. O

THEOREM 3.4. If (X,q) is a pretopological and p-topological,
then ¢ < 7*p.
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Proof. Since (X, q) is a pretopological and p-topological, V,(x) =
I, (Ve(z)).

Claim: Vy(z) < Vy(x). Let V € Vy(z). Then I,,(V) € L,(V,(2)) =
V,(x). By Induction, I7(V) € V,(x) for alln € N, so x € I7(V) for
all n € N. Thus x € N I(V) = I (V), and hence V € V().
Thus the Claim is proved.

From Vy (2) = Vywp(r), we obtain ¢ < 7¥p. O

PROPOSITION 3.5. ([3]). Let p and ¢ be topological. Then (X, q)
is p-topological iff ¢ < p.

Proof. Since g is topological, V,(z) has a filter base of g-open sets.

( =) Since (X, q) is p-topological and topological, by Theorem
34, ¢ < m¥p=0p

(<= ) Let ¢ < p. Then I,(A) C I,(A) C A. This implies that
each g-open set is p-open, so I,(V,(x)) = V,(x), by Proposition 3.3.
(X, q) is p-topological. O

PROPOSITION 3.6. ([5]). If (X,q) is p-topological and p < p/,
then (X, q) is p'-topological.

Proof. Tt follows from p < p implies I,(G) > I(G). O

Note that for ¢ € C(X), 7, = {A C X : [,(A) = A} is a topology
on X and 7¢ is the convergence structure defined by

rg(F) L x < V, (v) < F, for each F € F(X),

where V; () is the 7,-neighborhood filter at « € X. Then 7¢ is the
finest topological convergence structure on X coarser than ¢.([5]).
Now, we obtain the following theorem, which is different from Corol-
lary 2.4 of [6].

THEOREM 3.7. If (X, q) is p-topological, then:
(1) (X, mq) is p-topological and 7q¢ < mg < 7¥p.
(2) (X, 7q) is p-topological.
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Proof. (1) Let F —9, 2: then there exists a G —% & such that
F > I,(G) > I,(V4(x)). This holds for every F 4 2, s0

Vig(®) = Vy(2) = {F e F(X): F 5 2} 2 L(V,(x) = L,(Vrq(z)).

Thus (X, rg) is p-topological, so the first part is proved.

It is clear that 7¢ < mq. Since (X, 7q) is p-topological and pre-
topological, by Theorem 3.4, wg < 7#%p.

(2) Since (X, 7¢) is T¢g-topological and 7¢ < wg < 7“p < p, by
Proposition 3.6, (X, 7q) is p-topological. O

Definition 3.8 For ¢, p € C(X), 7,¢ is defined by:

Tpq

F -2 « 3¢ % rand n € N such that F > V‘?(Q)‘

PROPOSITION 3.9. For q, p € C(X), (X,7,q) is p-topological.

Proof. Let F —9, r. Then there exists ¢ L xandne N
such that F > VG), so V,(F) = V,(V3(9)) = Vit (G), [5]. Thus

Vp(F) %, %. This means (X, Tpq) is p-topological. O

4. Relations between Decomposition Series and Topolog-
ical Series of Convergence Spaces

In this section, we will remind ”topological series” defined by [5]
and show relations between decomposition series and supratopolog-
ical series, the formular 77(7,q) = 7 ¢, where w is the first limit
ordinal and « and 3(> 1) are ordinals.

Let ¢ € C(X) and «a > 0 ordinal number. The topological series
for ¢ is the descending ordinal sequence {7,¢} defined recursively on
X as follows:

To¢ = ¢

g : F 2% r = 3¢ % z and n € N such that F > v;;'(g)
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Tog : F 9y = 3¢ -4 ¢ and n € N such that F > v;*;q(g)
T3¢ © F B9y = 3¢ -4 ¢ and n € N such that F > v;;q(g)

Taqg + F —% g «— 3¢ 4 2, ne N and 8 < a such that
F 2 V2, (6),
where we know that 71¢ = 7,q, T2q = Tr¢@ = Tr,qq -, etc

Also, we know that if there exists o’ such that o = o’ + 1, then
F 2% v e—= 3¢ % 4 and n € N such that F > Vfa,q(g),

PROPOSITION 4.1. ([5]). For ¢ € C(X), there exists § which is

the finest q-topological convergence structure on X, and F L opiff
F > Vy(x) for somen € N.

LEMMA 4.2, IfG -4 z, then Veti(z) < VHG).

Proof. Ac Vit x) = xe II*Y(4) = xe L(I}(4) =
IA) e Vy(z) = I}(A)€G, since§ <L r = G >V,(x). Thus
AeV(G). O

PROPOSITION 4.3. § = 714.

Proof. We have already known ¢ > 7y¢, so it remain to show
T4 > g.

Let F —Z% ». Then there exists ¢ — z and n € N such that
F 2V (G).

By the above Lemma, F > V2*(G) > Vit!(x), so F A O

PROPOSITION 4.4. (1) g > n"¢ > ¢ > 7¥q. (2) 7(m19) = m%q.
Proof. (1) It is clear that ¢ > 7"¢. Let n € N and F € F(X).

Then F —% 2 «— F > Vir) = F 2 x, since & — .

Thus, "¢ > ¢ for each n € N.
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Also, F 4, @ = dn € Nsuchthat F > V7 (2) > Ny V' (1) =

Vi (2) = Vawy(z) = F —S .

(2) Since ¢ = 71q, by (1), n(r19) > n(x¥q) = 7%q. While, by
Theorem 3.7, n{mq) < n%¢q, since ¢ is a g¢-topological. Thus,
7(1q) = 7¥q. O

We know that for ¢ € C'(X), the first term in the toplogical series
for ¢ is mg = ¢. m1q is the finest topological convergence structure
on X and also the lower g-topological modification of ¢, since 7¢ =
g < g < q. Note that ¢ has no upper g¢-topological modification
unless ¢ is a topology. We next show that that mq is related to 1 ¢
exactly as 7y q is related to ¢. Note that the lower 1 ¢-topological
modification of 71q is 71q defined by:

F 14, ¢ <= 3G 2% 2 and n € N such thatF > V:'lq(g)-

PROPOSITION 4.5. For any q € C(X), Taq = T1q.

Proof. F =4 2 = 3¢ L z and n € N such that F >
V!'l.

T14
Conversely, F L N 4G "9, ¢ and n € N such that F >

(G). Also, ¢ =% 2 = IH L 2 and m € N such that

G > VI*(H). Thus F > V7, (V(H)) > Vi, (Vit(H)) = Vitm(H).

T14 T14

Thus F —% 2. O

(G). But ¢ —% x since 11¢ < q. Thus F —% .
Vﬂ.

T14

PROPOSITION 4.6. w{71q) = n%“¢q and n(m2q) = 7% (114).

Proof. The first equality follows from the Proposition 4.4. The
second equality follows from 7 (mq) = 7(71q) = 7% (T19). O

PROPOSITION 4.7. If «v is a limit ordinal, V;"(x) = ﬁﬁ<aV§(:I:).
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Proof. A € Vi(z) < x € IJ(A) = ﬂ|3<aff(A) = =z €
IP(A), V< a <= AeVP(z), Vi<a &= AcngVi(z). O

PROPOSITION 4.8. Vi, o(x) = V2" (z) and V. o(x) = V" (z) for
allre X.

Proof. As we showed in Proposition 4.6, 7(m2q) = 7¥(r1q). Thus
forany » € X, V,,,(x) = Vi, (). Also, by Proposition 4.4, V, ,(x) =
V¢(x). By Corollary 2.5, Vﬁqu( ) = Vrq(Vrgl2)) = V(W9 () =
V“’*““‘( ) = V2 (17) Similarly, VI (x) = Vy"(z). Thus V¢ (x) =
M Vi (2) = w ().

Expending the reasonmg of Proposition 4.6, we have V,.(z) =
V;‘;q(a ), forallz € X, since n(73q) = 7%(729). m(ﬂ) Vrq(Vrg(x)) =
vy (V‘“‘2 (x)) = V““QQ(:B) Similarly, V7, (z) = V;" "(x), s0 Vygelz) =
vgq(« 2) = Mo Vig(#) = NucwV, Vein(e) = V¢© (2). Likewise, we ob-
tain Vy  (2) = Vf; (). This 11]1])1165 that Vqu(i) = NncwVy “(x) =

Vi (). O

qu

For ¢ € C(X) and any ordinal «, let 7,¢ and ¢, be defined
inductively by 70¢ = ooq and:

F% 2y «— 3¢ L 2, ne Nand 8 < o such that F >

Vieq(9),

F 229y — 3¢ LN x, n € N and 3 < « such that
F>Vr (6),

Note that m g = o1q is the lower g-topological modification of ¢.
If & + 1 is any non-limit ordinal, ¢411¢ = T1{¢aq); in other words,
Gat14 is the lower o, ¢-topological modification of o,¢. If «r is a limit
ordinal, o,q =infiosq: 3 < a}. Our first goal is to prove 0,q = 7.4
for every ordinal .

PROPOSITION 4.9. For any ordinal a, T,q > 0.4.
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Proof. Assume that 73q > 04¢ for every ordinal 3 < «. Then
F %2 = 3¢ 2L rand 3 < a such that F > V7, (G) 2
Visqa(G)-

Also, since G 4 2, ¢ 224 . Thus F =% . O

PROPOSITION 4.10. For any ordinal o, 7,q = 0.4.

Proof. The result is known for o« = 1. Assume the equality holds
for # < a. By Proposition 4.9, it remains to show that F 2,
= F "4y

Case 1. 3o’ such that & = o/+1. Let F —2% 2. Then there exists
F 2% & and n € N such that F > V7 Lq(G) = V7 (G). Also,

by induction hypothesis. G =%, r, so there exists H — z, 8 <
« and m € N such that G > V1 (H). Thus, F > V; ,(G) =

Ve,V (H) 2V (Ve (H)) 2 Ve (H), and hence F %
z.

Case 2. « is a limit ordinal. Then by induction hypothesis, T3¢ =
o3q for 8 < a, s0 o, = inf{logg : F < a} =inf{rgg : § < a} =
Tad. U

PROPOSITION 4.11. For any ordinal , 71(7aq) = Tat19. Thus
Virggl) =V (x) foralle € X.

Proof. The first agsertion follows by Proposition 4.10 and the note
preceding Proposition 4.9. The second follows Proposition 4.6, since
m{rip) = 7¥p holds for any convergence structure p, letting p =
Tad- O

PROPOSITION 4.12. For any ordinal « and r € X, VTQq(az) =
Vf;’a (x).

Proof. We will use induction on «. For « = 1, the result follows
by Proposition 4.11. Assume the equality holds for every 8 < a.

Case 1. Assume that there exists o such that o = o' + 1. then by
Proposition 4.11, V;_,(x) = Vi (), where by induction hypothesis,
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Vrg(®) = Vo (1), Thus V2_o(2) = VL (VL (2)) = V& 2(),

and similarly V*, (z) = V;’a!”’(a:)‘ Thus V, . (x) = V7, (x) =

Ta'q
1
' 41

M Vi, () = Nneo V™ M) = V27 “(x) = V5" 7 (z) = Vi (2).
Case 2. Assume that « is a limit ordinal. By induction hypoth-
3 .
esis, Vpyo(x) = V5 (z) for § < a. Thus V; 4(x) = 0,3<O¢V;"ﬁ () =
V;"a (x). O

[=3

Consequently, our last result is the following Theorems.

THOEREM 4.13. For every ordinal @ and 3 > 1 and every & € X,
B () — w8,

(1) V; (x)=V; A (x).

(2) 7(1aq) = 7" Py

Proof. (1) We will use induction on 3. For 3 = 1, the result
follows by Proposition 4.12. Assume the equality holds for every
¥ <3

Case 1. 3¢ such that 8 = 3'+1. then by Corollary 2.5, V. )=
VE @) = VI (Vra(@) = V57 (0" (2) = V" H (@) = Ve P (a).

Case 2. 8 is a limit ordinal. By induction hypothesis, VY (x) =
V;’:"’(zz) for v < 4. Thus Vgﬁiq(xr) = MNygVy (x) = ﬂ,,.<,3Vf;’a""(;r) =
V;’ 8 (x).

(2) By (1), it is clear. O

Finally, we define the lengths of decomposition series and topo-
logical series of ¢ € C(X), Ipg, and lrq, respectively by:

Ipg=inf{) : X is an ordinal such that g = 7 14},

Irg =inf{ A : X is an ordinal such that 7n¢ = may1¢9},

We know that Ipg=inf{\ : Aisan ordinal s.t. I}(A) = [}1(A4), VA C
X} =inf{X : X is an ordinal such that ¢ = 7¢},
PROPOSITION 4.14. For ¢ € C(X) and an ordinal «,

(1) iflpq < «, then 7,9 = 74q;
(2) iflpg < o, then Ipg < w®.
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Proof. (1) Let A = Ipq. Then maq = 7a31¢ = 7¢. Since X < a,
™G > Taq 2 7q. Thus 7,¢ = 7q.

(2) Since lpg < o, Toq = 7¢. Thus 7(7.q) = 7(7q), so 79" ¢ = 7¢.
Finally, ipg < w®. U
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