RELATIONS BETWEEN DECOMPOSITION SERIES AND TOPOLOGICAL SERIES OF CONVERGENCE SPACES

SANG HO PARK

ABSTRACT. In this paper, we will show some relations between decomposition series { $\pi^{\alpha}q : \alpha$ is an ordinal } and topological series { $\tau_{\alpha}q : \alpha$ is an ordinal } for a convergence structure q and the formular $\pi^{\beta}(\tau_{\alpha}q) = \pi^{\omega^{\alpha}\beta}q$, where ω is the first limit ordinal and α and $\beta(\geq 1)$ are ordinals.

I. Introduction and Preliminaries

A convergence structure q on a set X defined by [1] in 1964 is a function from the set F(X) of all filters on X into the set P(X) of all subsets of X, satisfying the following conditions:

- (1) $x \in q(\dot{x})$ for all $x \in X$;
- (2) $\mathcal{F} \leq \mathcal{G}$ implies $q(\mathcal{F}) \subseteq q(\mathcal{G})$;
- (3) $x \in q(\mathcal{F})$ implies $x \in q(\mathcal{F} \cap \dot{x})$,

where \dot{x} denotes the principal ultrafilter containing $\{x\}$; \mathcal{F} and \mathcal{G} are in F(X). Then the pair (X,q) is called a *convergence space*. If $x \in q(\mathcal{F})$, then we say that \mathcal{F} q-converges to x. The filter $\mathcal{V}_q(x)$ obtained by intersecting all filters which q-converge to x is called the q-neighborhood filter at x. If $\mathcal{V}_q(x)$ q-converges to x for each $x \in X$, then q is said to be pretopological and the pair (X,q) is called a pretopological convergence space.

Received January 17, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54A10, 54A20.

Key words and phrases: convergence structure(space), pretopological convergence structure(space), decomposition series, topological series.

Let C(X) be the set of all convergence structures on X, partially ordered as follows:

$$q_1 \leq q_2 \;\; ext{ iff } \;\; q_2(\mathcal{F}) \subseteq q_1(\mathcal{F}) \; ext{for all } \mathcal{F} \in F(X).$$

If $q_1 \leq q_2$, then we say that q_1 is *coarser* than q_2 , and q_2 is *finer* than q_1 . By [2], we know that if q_1 is pretopological, then

$$q_1 \leq q_2$$
 iff $\mathcal{V}_{q_1}(x) \leq \mathcal{V}_{q_2}(x)$ for all $x \in X$.

For any $q \in C(X)$, we define a related convergence structure $\pi(q)$, as follows:

$$x \in \pi(q)(\mathcal{F})$$
 iff $\mathcal{V}_q(x) \leq \mathcal{F}$.

In this case, $\pi(q)$ is called the *pretopological modification* of q.

In 1973, Kent and Richardson [3] introduced the associated decomposition series { $\pi^{\alpha}q: \alpha$ is an ordinal } defined by

$$\pi^{\alpha}q(\mathcal{F}) \xrightarrow{q} x \iff \mathcal{V}_{q}^{\alpha}(x) \leq \mathcal{F}, \text{ for each } \mathcal{F} \in F(X),$$

where

$$\begin{split} A \in \mathcal{V}^{\alpha}_{q}(x) \iff x \in I^{\alpha}_{q}(A), \text{ and} \\ I^{\alpha}_{q}(A) = \begin{cases} I_{q}(I^{\alpha-1}_{q}(A)), & \text{if } \alpha - 1 \text{ exists}, \\ \cap_{\beta < \alpha} I^{\beta}_{\nu}(A), & \text{if } \alpha \text{ is a limit ordinal} \end{cases} \end{split}$$

In 1996, Park [4] studied the n-th pretopological modification $\pi^n q$ and quotient map for a convergence space q.

In 1999, for a convergence space (X, q) with a second convergence structure p, Wilde [5] introduced that (X, q) is "p-topological" iff $\mathcal{F} \xrightarrow{q} x$ implies $\mathcal{V}_p(\mathcal{F}) \xrightarrow{q} x$. Also they showed that there is a finest p-topological convergence structure $\tau_p q$ on X coarser than q and $\mathcal{F} \xrightarrow{\tau_p q} x$ iff there exist $\mathcal{G} \xrightarrow{q} x$ such that $\mathcal{F} \geq \mathcal{V}_p^n(\mathcal{G})$, for some $n \in N$. Furthermore, they induced the topological series for q, the descending ordinal sequence { $\tau_{\alpha} q : \alpha$ is an ordinal } defined recursively on X as follows:

$$\begin{aligned} \tau_0 q &= q \\ \tau_1 q \ : \ \mathcal{F} \xrightarrow{\tau_1 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_q^n(\mathcal{G}) \\ \tau_2 q \ : \ \mathcal{F} \xrightarrow{\tau_2 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_{\tau_1 q}^n(\mathcal{G}) \\ \tau_3 q \ : \ \mathcal{F} \xrightarrow{\tau_3 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_{\tau_2 q}^n(\mathcal{G}) \\ \vdots \\ \tau_\alpha q \ : \ \mathcal{F} \xrightarrow{\tau_\alpha q} x \iff \exists \mathcal{G} \xrightarrow{q} x, n \in N \text{ and } \beta < \alpha \text{ such that } \\ \mathcal{F} \geq \mathcal{V}_{\tau_\beta q}^n(\mathcal{G}). \end{aligned}$$

In this paper, we will show some relations between decomposition series $\{\pi^{\alpha}q : \alpha \text{ is an ordinal }\}$ and topological series $\{\tau_{\alpha}q : \alpha \text{ is an ordinal }\}$ for a convergence structure q and the formular $\pi^{\beta}(\tau_{\alpha}q) = \pi^{\omega^{\alpha}\beta}q$, where ω is the first limit ordinal and α and $\beta(\geq 1)$ are ordinals.

2. Decomposition Series, the Neighborhood and Interior Filter of a Filter

We shall summarize some results from [3] and other sources using more modern notation and terminology. we are mainly interested in comparing properties of *decomposition series* with those of the *topological series*, which will be introduced in [5].

Let (X,q) be a convergence space. For $A \subseteq X$, we recall that $I_q^0(A) = A$, $I_q^1 = I_q(A) = \{x : A \in \mathcal{V}_q(x)\}$ Given an ordinal number $\alpha \ge 1$, let I_q^{α} and cl_q^{α} denote the α th

Given an ordinal number $\alpha \geq 1$, let I_q^{α} and cl_q^{α} denote the α th iterations of interior operator and closure operator for q, respectively. For $A \subseteq X$, we inductively define:

$$\begin{split} I_q^{\alpha}(A) &= \begin{cases} I_q(I_q^{\alpha-1}(A)), & \text{if } \alpha-1 \text{ exists,} \\ &\cap_{\beta < \alpha} I_q^{\beta}(A), & \text{if } \alpha \text{ is a limit ordinal.} \end{cases} \\ cl_q^{\alpha}(A) &= \begin{cases} cl_q(cl_q^{\alpha-1}(A)), & \text{if } \alpha-1 \text{ exists,} \\ &\cup_{\beta < \alpha}(cl_q^{\beta}(A)), & \text{if } \alpha \text{ is a limit ordinal.} \end{cases} \end{split}$$

PROPOSITION 2.1. ([5]). For every ordinal α and $A \subseteq X, X \setminus$ $cl^{\alpha}_{a}(A) = I^{\alpha}_{a}(X \setminus A).$

If (X,q) is a convergence space and $\alpha \geq 1$, let $\pi^{\alpha}q$ be the pretopology on X whose neighborhood filter is $\mathcal{V}_q^{\alpha}(x)$, that is, $\mathcal{V}_{\pi^{\alpha}q}(x) =$ $\mathcal{V}^{lpha}_q(x)$, where $A \in \mathcal{V}^{lpha}_q(x)$ iff $x \in I^{lpha}_q(A)$. Since $\beta < \alpha$ implies $I_q^{\alpha}(A) \subseteq I_q^{\beta}(A)$, it follows that $\mathcal{V}_q^{\alpha}(x) \leq \mathcal{V}_q^{\beta}(x)$, and consequently $\pi^{lpha}q\leq\pi^{eta}q$.

Definition 2.2. ([3], [5]). The descending chain $\{\pi^{\alpha}q : \alpha \geq 1\}$ of pretopologies on X is called the decomposition series of (X, q).

Clearly $\pi^1 q = \pi q$ is the pretopological modification of q, which is the finest pretopological convergence structure on X coarser than q.

Definition 2.3. ([5]). For any ordinal $\alpha, p \in C(X)$ and $\mathcal{G} \in$ F(X), we define the neighborhood filter $\mathcal{V}_{p}(\mathcal{G})$ and the interior filter $I_p(\mathcal{G})$ of \mathcal{G} , respectively, as follows:

$$\mathcal{V}_p^1(\mathcal{G}) = \mathcal{V}_p(\mathcal{G}), \ \ \mathcal{V}_p^\alpha(\mathcal{G}) = \{A \subseteq X : I_p^\alpha(A) \in \mathcal{G}\}.$$

$$I_p^1(\mathcal{G}) = I_p(\mathcal{G}), \quad I_p^{\alpha}(\mathcal{G}) = [\{I_p^{\alpha}(G) : G \in \mathcal{G}\}] \text{ if } I_p(G) \neq \emptyset, \ \forall G \in \mathcal{G},$$

where $[\mathcal{B}]$ means the filter generated by \mathcal{B} if \mathcal{B} is a a filter base.

Then we know that if $\alpha < \beta$, then $\mathcal{V}_p^{\beta}(\mathcal{G}) \leq \mathcal{V}_p^{\alpha}(\mathcal{G}) \leq \mathcal{G} \leq I_p^{\alpha}(\mathcal{G}) \leq \beta$ $I_p^{\beta}(\mathcal{G}).$

PROPOSITION 2.4. For any ordinals α , β , $x \in X$ and $A \subseteq X$. (1) $I_q^{\alpha+\beta}(A) = I_q^{\beta}(I_q^{\alpha}(A)).$ (2) $\mathcal{V}_q^{\alpha+\beta}(x) = \mathcal{V}_q^{\alpha}(\mathcal{V}_q^{\beta}(x)).$

Proof. (1) Let α be a fixed ordinal. We use transfinite induction on β . If $\beta = 1$, $I_q^{\alpha+1} = I_q(I_q^{\alpha}(A))$ follows by definition. Next, let β be any arbitrary ordinal.

Case 1. Assume that there exists $\bar{\beta}$ such that $\bar{\beta} + 1 = \beta$. By the induction hypothesis, $I_q^{\alpha+\bar{\beta}}(A) = I_q^{\bar{\beta}}(I_q^{\alpha}(A))$, and so $I_q^{\alpha+\bar{\beta}}(A) =$
$$\begin{split} I_q^{\alpha+\bar{\beta}+1}(A) &= I_q(I_q^{\alpha+\bar{\beta}}(A)) = I_q(I_q^{\bar{\beta}}(I_q^{\alpha}(A))) = I_q^{\beta}(I_q^{\alpha}(A)).\\ \text{Case 2. Assume that } \beta \text{ is a limit ordinal. } I_q^{\alpha+\beta}(A) = \cap_{\gamma<\beta}I_q^{\alpha+\gamma}(A) = \end{split}$$

 $\cap_{\gamma < \beta} I^{\gamma}_{a}(I^{\alpha}_{a}(A)) = I^{\beta}_{a}(I^{\alpha}_{a}(A)).$

Decomposition Series and Topological Series

$$(2) A \in \mathcal{V}_q^{\alpha+\beta}(x) \iff x \in I_q^{\alpha+\beta}(A) \iff x \in I_q^{\beta}(I_q^{\alpha}(A)) \iff I_q^{\alpha}(A) \in \mathcal{V}_q^{\beta}(x) \iff A \in \mathcal{V}_q^{\alpha}(\mathcal{V}_q^{\beta}(x)).$$

COROLLARY 2.5. For any ordinals α , β , and $\mathcal{F} \in F(X)$, (1) $I_q^{\alpha+\beta}(\mathcal{F}) = I_q^{\beta}(I_q^{\alpha}(\mathcal{F}))$ if these are filters. (2) $\mathcal{V}_q^{\alpha+\beta}(\mathcal{F}) = \mathcal{V}_q^{\alpha}(\mathcal{V}_q^{\beta}(\mathcal{F}))$.

3. *p*-Topological Convergence Spaces

In this section, we will summary some propositions about p-topological convergence space of [5] and [6], and change two propositions, which are the following Theorem 3.4 and 3.7.

Henceforth (X, q) means a convergence space equipped with a second convergence structure p.

Definition 3.1. ([5]). A convergence space (X, q) is *p*-topological iff $\mathcal{F} \xrightarrow{q} x$ implies that there exists a $\mathcal{G} \xrightarrow{q} x$ such that $\mathcal{F} \geq I_p(\mathcal{G})$.

PROPOSITION 3.2. ([5]). (X,q) is p-topological, iff $\mathcal{F} \xrightarrow{q} x \implies \mathcal{V}_p(\mathcal{F}) \xrightarrow{q} x$.

PROPOSITION 3.3. ([5]). Let (X,q) be a pretoplogical convergence. Then (X,q) is p-topological iff $\mathcal{V}_q(x) = I_p(\mathcal{V}_q(x))$.

Proof. (\Longrightarrow) Since $\mathcal{V}_q(x) \xrightarrow{q} x$ and (X,q) is *p*-topological, there exists $\mathcal{G} \xrightarrow{q} x$ such that $\mathcal{V}_q(x) \ge I_p(\mathcal{G})$. Then $\mathcal{G} \ge \mathcal{V}_q(x)$, so $\mathcal{G} \ge I_p(\mathcal{G})$. This implies $\mathcal{G} = \mathcal{V}_q(x) = I_p(\mathcal{G}) = I_p(\mathcal{V}_q(x))$

 (\Leftarrow) Let $\mathcal{F} \xrightarrow{q} x$. Then $\mathcal{F} \geq \mathcal{V}_q(x) = I_p(\mathcal{V}_q(x))$. Thus, (X,q) is *p*-topological, since $\mathcal{V}_q(x) \xrightarrow{q} x$. \Box

THEOREM 3.4. If (X, q) is a pretopological and p-topological, then $q \leq \pi^{\omega} p$.

Proof. Since (X, q) is a pretopological and *p*-topological, $\mathcal{V}_q(x) = I_p(\mathcal{V}_q(x))$.

Claim: $\mathcal{V}_q(x) \leq \mathcal{V}_p^{\omega}(x)$. Let $V \in \mathcal{V}_q(x)$. Then $I_p(V) \in I_p(\mathcal{V}_q(x)) = \mathcal{V}_q(x)$. By Induction, $I_p^n(V) \in \mathcal{V}_q(x)$ for all $n \in N$, so $x \in I_p^n(V)$ for all $n \in N$. Thus $x \in \bigcap_{n < \omega} I_p^n(V) = I_p^{\omega}(V)$, and hence $V \in \mathcal{V}_p^{\omega}(x)$. Thus the Claim is proved.

From $\mathcal{V}_p^{\omega}(x) = \mathcal{V}_{\pi^{\omega}p}(x)$, we obtain $q \leq \pi^{\omega}p$.

PROPOSITION 3.5. ([5]). Let p and q be topological. Then (X, q) is p-topological iff $q \leq p$.

Proof. Since q is topological, $\mathcal{V}_q(x)$ has a filter base of q-open sets. (\implies) Since (X, q) is p-topological and topological, by Theorem 3.4, $q \leq \pi^{\omega} p = p$.

 (\Leftarrow) Let $q \leq p$. Then $I_q(A) \subseteq I_p(A) \subseteq A$. This implies that each q-open set is p-open, so $I_p(\mathcal{V}_q(x)) = \mathcal{V}_q(x)$, by Proposition 3.3. (X,q) is p-topological.

PROPOSITION 3.6. ([5]). If (X,q) is p-topological and p < p', then (X,q) is p'-topological.

Proof. It follows from
$$p < p'$$
 implies $I_p(\mathcal{G}) \ge I_{p'}(\mathcal{G})$.

Note that for $q \in C(X)$, $\tau_q = \{A \subseteq X : I_q(A) = A\}$ is a topology on X and τq is the convergence structure defined by

$$\tau q(\mathcal{F}) \xrightarrow{q} x \iff \mathcal{V}_{\tau_q}(x) \leq \mathcal{F}, \text{ for each } \mathcal{F} \in F(X),$$

where $\mathcal{V}_{\tau_q}(x)$ is the τ_q -neighborhood filter at $x \in X$. Then τq is the finest topological convergence structure on X coarser than $q_{\cdot}([5])$. Now, we obtain the following theorem, which is different from Corollary 2.4 of [6].

THEOREM 3.7. If (X, q) is p-topological, then: (1) $(X, \pi q)$ is p-topological and $\tau q \leq \pi q \leq \pi^{\omega} p$. (2) $(X, \tau q)$ is p-topological.

 $\mathbf{84}$

Proof. (1) Let $\mathcal{F} \xrightarrow{q} x$; then there exists a $\mathcal{G} \xrightarrow{q} x$ such that $\mathcal{F} \geq I_p(\mathcal{G}) \geq I_p(\mathcal{V}_q(x))$. This holds for every $\mathcal{F} \xrightarrow{q} x$, so

$$\mathcal{V}_{\pi q}(x) = \mathcal{V}_q(x) = \cap \{ \mathcal{F} \in F(X) : \mathcal{F} \xrightarrow{q} x \} \ge I_p(\mathcal{V}_q(x)) = I_p(\mathcal{V}_{\pi q}(x)).$$

Thus $(X, \pi q)$ is p-topological, so the first part is proved.

It is clear that $\tau q \leq \pi q$. Since $(X, \pi q)$ is *p*-topological and pre-topological, by Theorem 3.4, $\pi q \leq \pi^{\omega} p$.

(2) Since $(X, \tau q)$ is τq -topological and $\tau q \leq \pi q \leq \pi^{\omega} p \leq p$, by Proposition 3.6, $(X, \tau q)$ is *p*-topological.

Definition 3.8 For $q, p \in C(X), \tau_p q$ is defined by:

$$\mathcal{F} \xrightarrow{\tau_p q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_p^n(\mathcal{G}).$$

PROPOSITION 3.9. For $q, p \in C(X)$, $(X, \tau_p q)$ is p-topological.

Proof. Let $\mathcal{F} \xrightarrow{\tau_p q} x$. Then there exists $\mathcal{G} \xrightarrow{q} x$ and $n \in N$ such that $\mathcal{F} \geq \mathcal{V}_p^n(\mathcal{G})$, so $\mathcal{V}_p(\mathcal{F}) \geq \mathcal{V}_p(\mathcal{V}_p^n(\mathcal{G})) = \mathcal{V}_p^{n+1}(\mathcal{G})$, [5]. Thus $\mathcal{V}_p(\mathcal{F}) \xrightarrow{\tau_p q} x$. This means $(X, \tau_p q)$ is p-topological. \Box

4. Relations between Decomposition Series and Topological Series of Convergence Spaces

In this section, we will remind "topological series" defined by [5] and show relations between decomposition series and supratopological series, the formular $\pi^{\beta}(\tau_{\alpha}q) = \pi^{\omega^{\alpha}\beta}q$, where ω is the first limit ordinal and α and $\beta(\geq 1)$ are ordinals.

Let $q \in C(X)$ and $\alpha \geq 0$ ordinal number. The topological series for q is the descending ordinal sequence $\{\tau_{\alpha}q\}$ defined recursively on X as follows:

$$\begin{array}{l} \tau_0 q = q \\ \tau_1 q \ : \ \mathcal{F} \xrightarrow{\tau_1 q} x \ \Longleftrightarrow \ \exists \mathcal{G} \xrightarrow{q} x \ \text{and} \ n \in N \ \text{such that} \ \mathcal{F} \geq \mathcal{V}_q^n(\mathcal{G}) \end{array}$$

$$\begin{aligned} \tau_2 q \ : \ \mathcal{F} &\xrightarrow{\tau_2 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_{\tau_1 q}^n(\mathcal{G}) \\ \tau_3 q \ : \ \mathcal{F} &\xrightarrow{\tau_3 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_{\tau_2 q}^n(\mathcal{G}) \\ \vdots \\ \tau_\alpha q \ : \ \mathcal{F} &\xrightarrow{\tau_\alpha q} x \iff \exists \mathcal{G} \xrightarrow{q} x, n \in N \text{ and } \beta < \alpha \text{ such that } \\ \mathcal{F} \geq \mathcal{V}_{\tau_\beta q}^n(\mathcal{G}), \end{aligned}$$

where we know that $\tau_1 q = \tau_q q$, $\tau_2 q = \tau_{\tau_1 q} q = \tau_{\tau_q q} q$, \cdots , etc. Also, we know that if there exists α' such that $\alpha = \alpha' + 1$, then $\mathcal{F} \xrightarrow{\tau_{\alpha} q} x \iff \exists \mathcal{G} \xrightarrow{q} x$ and $n \in N$ such that $\mathcal{F} \geq \mathcal{V}^n_{\tau_{\alpha'} q}(\mathcal{G})$,

PROPOSITION 4.1. ([5]). For $q \in C(X)$, there exists \tilde{q} which is the finest q-topological convergence structure on X, and $\mathcal{F} \xrightarrow{\tilde{q}} x$ iff $\mathcal{F} \geq \mathcal{V}_{q}^{n}(x)$ for some $n \in N$.

LEMMA 4.2. If $\mathcal{G} \xrightarrow{q} x$, then $\mathcal{V}_{q}^{n+1}(x) \leq \mathcal{V}_{q}^{n}(\mathcal{G})$.

Proof. $A \in \mathcal{V}_q^{n+1}(x) \implies x \in I_q^{n+1}(A) \implies x \in I_q(I_q^n(A)) \implies$ $I_q^n(A) \in \mathcal{V}_q(x) \implies I_q^n(A) \in \mathcal{G}$, since $\mathcal{G} \xrightarrow{q} x \implies \mathcal{G} \ge \mathcal{V}_q(x)$. Thus $A \in \mathcal{V}_q^n(\mathcal{G})$.

PROPOSITION 4.3. $\tilde{q} = \tau_1 q$.

Proof. We have already known $\tilde{q} \geq \tau_1 q$, so it remain to show $\tau_1 q \geq \tilde{q}$. Let $\mathcal{F} \xrightarrow{\tau_1 q} x$. Then there exists $\mathcal{G} \xrightarrow{q} x$ and $n \in N$ such that $\mathcal{F} \geq \mathcal{V}_q^n(\mathcal{G})$.

By the above Lemma, $\mathcal{F} \geq \mathcal{V}_q^n(\mathcal{G}) \geq \mathcal{V}_q^{n+1}(x)$, so $\mathcal{F} \xrightarrow{\widetilde{q}} x$. \Box

PROPOSITION 4.4. (1) $q \ge \pi^n q \ge \widetilde{q} \ge \pi^\omega q$. (2) $\pi(\tau_1 q) = \pi^\omega q$.

Proof. (1) It is clear that $q \ge \pi^n q$. Let $n \in N$ and $\mathcal{F} \in F(X)$. Then $\mathcal{F} \xrightarrow{\pi^n q} x \iff \mathcal{F} \ge \mathcal{V}_q^n(x) \implies \mathcal{F} \xrightarrow{\widetilde{q}} x$, since $\dot{x} \xrightarrow{q} x$. Thus, $\pi^n q \ge \widetilde{q}$ for each $n \in N$. Also, $\mathcal{F} \xrightarrow{\widetilde{q}} x \implies \exists n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_q^n(x) \geq \cap_{m < \omega} \mathcal{V}_q^m(x) = \mathcal{V}_q^{\omega}(x) = \mathcal{V}_{\pi^{\omega}q}(x) \implies \mathcal{F} \xrightarrow{\pi^{\omega}q} x.$

(2) Since $\tilde{q} = \tau_1 q$, by (1), $\pi(\tau_1 q) \ge \pi(\pi^{\omega} q) = \pi^{\omega} q$. While, by Theorem 3.7, $\pi(\tau_1 q) \le \pi^{\omega} q$, since $\tau_1 q$ is a *q*-topological. Thus, $\pi(\tau_1 q) = \pi^{\omega} q$.

We know that for $q \in C(X)$, the first term in the toplogical series for q is $\tau_1 q = \tilde{q}$. $\tau_1 q$ is the finest topological convergence structure on X and also the lower q-topological modification of q, since $\tau_1 q =$ $\tilde{q} \leq \pi^n q \leq q$. Note that q has no upper q-topological modification unless q is a topology. We next show that that $\tau_2 q$ is related to $\tau_1 q$ exactly as $\tau_1 q$ is related to q. Note that the lower $\tau_1 q$ -topological modification of $\tau_1 q$ is $\tilde{\tau_1 q}$ defined by:

$$\mathcal{F} \xrightarrow{\widetilde{\tau_1 q}} x \iff \exists \mathcal{G} \xrightarrow{\tau_1 q} x \text{ and } n \in N \text{ such that} \mathcal{F} \ge \mathcal{V}_{\tau_1 q}^n(\mathcal{G})$$

PROPOSITION 4.5. For any $q \in C(X)$, $\tau_2 q = \widetilde{\tau_1 q}$.

Proof. $\mathcal{F} \xrightarrow{\tau_2 q} x \implies \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}_{\tau_1 q}^n(\mathcal{G}).$ But $\mathcal{G} \xrightarrow{\tau_1 q} x \text{ since } \tau_1 q \leq q.$ Thus $\mathcal{F} \xrightarrow{\widetilde{\tau_1 q}} x.$

Conversely, $\mathcal{F} \xrightarrow{\tau_1 q} x \implies \exists \mathcal{G} \xrightarrow{\tau_1 q} x$ and $n \in N$ such that $\mathcal{F} \geq \mathcal{V}_{\tau_1 q}^n(\mathcal{G})$. Also, $\mathcal{G} \xrightarrow{\tau_1 q} x \implies \exists \mathcal{H} \xrightarrow{q} x$ and $m \in N$ such that $\mathcal{G} \geq \mathcal{V}_q^m(\mathcal{H})$. Thus $\mathcal{F} \geq \mathcal{V}_{\tau_1 q}^n(\mathcal{V}_q^m(\mathcal{H})) \geq \mathcal{V}_{\tau_1 q}^n(\mathcal{V}_{\tau_1 q}^m(\mathcal{H})) = \mathcal{V}_{\tau_1 q}^{n+m}(\mathcal{H})$. Thus $\mathcal{F} \xrightarrow{\tau_2 q} x$.

PROPOSITION 4.6. $\pi(\tau_1 q) = \pi^{\omega} q$ and $\pi(\tau_2 q) = \pi^{\omega}(\tau_1 q)$.

Proof. The first equality follows from the Proposition 4.4. The second equality follows from $\pi(\tau_2 q) = \pi(\widetilde{\tau_1 q}) = \pi^{\omega}(\tau_1 q)$.

PROPOSITION 4.7. If α is a limit ordinal, $\mathcal{V}_q^{\alpha}(x) = \bigcap_{\beta < \alpha} \mathcal{V}_q^{\beta}(x)$.

Proof. $A \in \mathcal{V}_q^{\alpha}(x) \iff x \in I_q^{\alpha}(A) = \bigcap_{\beta < \alpha} I_q^{\beta}(A) \iff x \in I_q^{\beta}(A), \ \forall \beta < \alpha \iff A \in \mathcal{V}_q^{\beta}(x), \ \forall \beta < \alpha \iff A \in \bigcap_{\beta < \alpha} \mathcal{V}_q^{\beta}(x).$

PROPOSITION 4.8. $\mathcal{V}_{\tau_n q}(x) = \mathcal{V}_q^{\omega^n}(x)$ and $\mathcal{V}_{\tau_\omega q}(x) = \mathcal{V}_q^{\omega^\omega}(x)$ for all $x \in X$.

Proof. As we showed in Proposition 4.6, $\pi(\tau_2 q) = \pi^{\omega}(\tau_1 q)$. Thus for any $x \in X$, $\mathcal{V}_{\tau_2 q}(x) = \mathcal{V}_{\tau_1 q}^{\omega}(x)$. Also, by Proposition 4.4, $\mathcal{V}_{\tau_1 q}(x) = \mathcal{V}_q^{\omega}(x)$. By Corollary 2.5, $\mathcal{V}_{\tau_1 q}^2 q(x) = \mathcal{V}_{\tau_1 q}(\mathcal{V}_{\tau_1 q}(x)) = \mathcal{V}_q^{\omega}(\mathcal{V}_q^{\omega}(x)) = \mathcal{V}_q^{\omega+\omega}(x) = \mathcal{V}_q^{\omega+\omega}(x)$. Similarly, $\mathcal{V}_{\tau_1 q}^n(x) = \mathcal{V}_q^{\omega n}(x)$. Thus $\mathcal{V}_{\tau_1 q}^{\omega}(x) = \bigcap_{n < \omega} \mathcal{V}_q^{\omega n}(x) = \mathcal{V}_q^{\omega^2}(x)$.

Expending the reasoning of Proposition 4.6, we have $\mathcal{V}_{\tau_3 q}(x) = \mathcal{V}_{\tau_2 q}^{\omega}(x)$, for all $x \in X$, since $\pi(\tau_3 q) = \pi^{\omega}(\tau_2 q)$. $\mathcal{V}_{\tau_2 q}^2(x) = \mathcal{V}_{\tau_2 q}(\mathcal{V}_{\tau_2 q}(x)) = \mathcal{V}_q^{\omega^2}(\mathcal{V}_q^{\omega^2}(x)) = \mathcal{V}_q^{\omega^2}(\mathcal{V}_q^{\omega^2}(x)) = \mathcal{V}_q^{\omega^2}(x)$. Similarly, $\mathcal{V}_{\tau_2 q}^n(x) = \mathcal{V}_q^{\omega^2 n}(x)$, so $\mathcal{V}_{\tau_3 q}(x) = \mathcal{V}_{\tau_2 q}^{\omega}(x) = \cap_{n < \omega} \mathcal{V}_q^{\omega^2 n}(x) = \mathcal{V}_q^{\omega^3}(x)$. Likewise, we obtain $\mathcal{V}_{\tau_n q}^n(x) = \mathcal{V}_q^{\omega^n}(x)$. This implies that $\mathcal{V}_{\tau_\omega q}(x) = \cap_{n < \omega} \mathcal{V}_q^{\omega^n}(x) = \mathcal{V}_q^{\omega^\omega}(x)$.

For $q \in C(X)$ and any ordinal α , let $\tau_{\alpha}q$ and $\sigma_{\alpha}q$ be defined inductively by $\tau_0q = \sigma_0q$ and:

 $\begin{array}{cccc} \mathcal{F} & \xrightarrow{\tau_{\alpha}q} x & \Longleftrightarrow & \exists \mathcal{G} \xrightarrow{q} x, \ n \in N \ \text{and} \ \beta < \alpha \ \text{such that} \ \mathcal{F} \geq \\ \mathcal{V}^{n}_{\tau_{\beta}q}(\mathcal{G}), & & \\ \mathcal{F} & \xrightarrow{\sigma_{\alpha}q} x & \Leftrightarrow & \exists \mathcal{G} \xrightarrow{\sigma_{\beta}q} x, \ n \in N \ \text{and} \ \beta < \alpha \ \text{such that} \\ \mathcal{F} \geq \mathcal{V}^{n}_{\sigma_{\beta}q}(\mathcal{G}), & & \end{array}$

Note that $\tau_1 q = \sigma_1 q$ is the lower q-topological modification of q. If $\alpha + 1$ is any non-limit ordinal, $\sigma_{\alpha+1}q = \tau_1(\sigma_{\alpha}q)$; in other words, $\sigma_{\alpha+1}q$ is the lower $\sigma_{\alpha}q$ -topological modification of $\sigma_{\alpha}q$. If α is a limit ordinal, $\sigma_{\alpha}q = \inf_{\{\sigma_{\beta}q : \beta < \alpha\}}$. Our first goal is to prove $\sigma_{\alpha}q = \tau_{\alpha}q$ for every ordinal α .

PROPOSITION 4.9. For any ordinal α , $\tau_{\alpha}q \geq \sigma_{\alpha}q$.

Proof. Assume that $\tau_{\beta}q \geq \sigma_{\alpha}q$ for every ordinal $\beta < \alpha$. Then $\mathcal{F} \xrightarrow{\tau_{\alpha}q} x \implies \exists \mathcal{G} \xrightarrow{q} x$ and $\beta < \alpha$ such that $\mathcal{F} \geq \mathcal{V}^{n}_{\tau_{\beta}q}(\mathcal{G}) \geq \mathcal{V}^{n}_{\sigma_{\beta}q}(\mathcal{G}).$

Also, since $\mathcal{G} \xrightarrow{q} x, \mathcal{G} \xrightarrow{\sigma_{\alpha}q} x$. Thus $\mathcal{F} \xrightarrow{\sigma_{\alpha}q} x$.

PROPOSITION 4.10. For any ordinal α , $\tau_{\alpha}q = \sigma_{\alpha}q$.

Proof. The result is known for $\alpha = 1$. Assume the equality holds for $\beta < \alpha$. By Proposition 4.9, it remains to show that $\mathcal{F} \xrightarrow{\sigma_{\alpha}q} x \implies \mathcal{F} \xrightarrow{\tau_{\alpha}q} x$.

Case 1. $\exists \alpha' \text{ such that } \alpha = \alpha' + 1$. Let $\mathcal{F} \xrightarrow{\sigma_{\alpha}q} x$. Then there exists $\mathcal{F} \xrightarrow{\sigma_{\alpha'}q} x$ and $n \in N$ such that $\mathcal{F} \geq \mathcal{V}^n_{\sigma_{\alpha'}q}(\mathcal{G}) = \mathcal{V}^n_{\tau_{\alpha'}q}(\mathcal{G})$. Also, by induction hypothesis. $\mathcal{G} \xrightarrow{\tau_{\alpha'}q} x$, so there exists $\mathcal{H} \xrightarrow{q} x$, $\beta < \alpha'$ and $m \in N$ such that $\mathcal{G} \geq \mathcal{V}^m_{\tau_{\beta}q}(\mathcal{H})$. Thus, $\mathcal{F} \geq \mathcal{V}^n_{\tau_{\alpha'}q}(\mathcal{G}) \geq \mathcal{V}^n_{\tau_{\alpha'}q}(\mathcal{V}^m_{\tau_{\beta'}q}(\mathcal{H})) \geq \mathcal{V}^n_{\tau_{\alpha'}q}(\mathcal{H}) \geq \mathcal{V}^{n+m}_{\tau_{\alpha'}q}(\mathcal{H})$, and hence $\mathcal{F} \xrightarrow{\tau_{\alpha}q} x$.

Case 2. α is a limit ordinal. Then by induction hypothesis, $\tau_{\beta}q = \sigma_{\beta}q$ for $\beta < \alpha$, so $\sigma_{\alpha}q = \inf\{\sigma_{\beta}q : \beta < \alpha\} = \inf\{\tau_{\beta}q : \beta < \alpha\} = \tau_{\alpha}q$.

PROPOSITION 4.11. For any ordinal α , $\tau_1(\tau_{\alpha}q) = \tau_{\alpha+1}q$. Thus $\mathcal{V}_{\tau_{\alpha+1}q}(x) = \mathcal{V}^{\omega}_{\tau_{\alpha}q}(x)$ for all $x \in X$.

Proof. The first assertion follows by Proposition 4.10 and the note preceding Proposition 4.9. The second follows Proposition 4.6, since $\pi(\tau_1 p) = \pi^{\omega} p$ holds for any convergence structure p, letting $p = \tau_{\alpha} q$.

PROPOSITION 4.12. For any ordinal α and $x \in X$, $\mathcal{V}_{\tau_{\alpha}q}(x) = \mathcal{V}_{q}^{\omega^{\alpha}}(x)$.

Proof. We will use induction on α . For $\alpha = 1$, the result follows by Proposition 4.11. Assume the equality holds for every $\beta < \alpha$.

Case 1. Assume that there exists α' such that $\alpha = \alpha' + 1$. then by Proposition 4.11, $\mathcal{V}_{\tau_{\alpha}q}(x) = \mathcal{V}^{\omega}_{\tau_{\alpha'}q}(x)$, where by induction hypothesis,

 $\begin{aligned} \mathcal{V}_{\tau_{\alpha'}q}(x) &= \mathcal{V}_{q}^{\omega^{\alpha'}}(x). \text{ Thus } \mathcal{V}_{\tau_{\alpha'}q}^{2}(x) = \mathcal{V}_{\tau_{\alpha'}q}^{1}(\mathcal{V}_{\tau_{\alpha'}q}^{1}(x)) = \mathcal{V}_{q}^{\omega^{\alpha'}2}(x), \\ \text{and similarly } \mathcal{V}_{\tau_{\alpha'}q}^{n}(x) &= \mathcal{V}_{q}^{\omega^{\alpha'}n}(x). \text{ Thus } \mathcal{V}_{\tau_{\alpha}q}(x) = \mathcal{V}_{\tau_{\alpha'}q}^{\omega}(x) = \\ \cap_{n < \omega} \mathcal{V}_{q}^{n}(x) = \cap_{n < \omega} \mathcal{V}_{q}^{\omega^{\alpha'}n}(x) = \mathcal{V}_{q}^{\omega^{\alpha'}\omega}(x) = \mathcal{V}_{q}^{\omega^{\alpha'+1}}(x) = \mathcal{V}_{q}^{\omega^{\alpha}}(x). \\ \text{Case 2. Assume that } \alpha \text{ is a limit ordinal. By induction hypoth-} \end{aligned}$

Case 2. Assume that α is a limit ordinal. By induction hypothesis, $\mathcal{V}_{\tau_{\beta}q}(x) = \mathcal{V}_{q}^{\omega^{\beta}}(x)$ for $\beta < \alpha$. Thus $\mathcal{V}_{\tau_{\alpha}q}(x) = \bigcap_{\beta < \alpha} \mathcal{V}_{q}^{\omega^{\beta}}(x) = \mathcal{V}_{q}^{\omega^{\alpha}}(x)$.

Consequently, our last result is the following Theorems.

THOEREM 4.13. For every ordinal α and $\beta \geq 1$ and every $x \in X$, (1) $\mathcal{V}^{\beta}_{\tau_{\alpha}q}(x) = \mathcal{V}^{\omega^{\alpha}\beta}_{q}(x)$. (2) $\pi^{\beta}(\tau_{\alpha}q) = \pi^{\omega^{\alpha}\beta}q$.

Proof. (1) We will use induction on β . For $\beta = 1$, the result follows by Proposition 4.12. Assume the equality holds for every $\gamma < \beta$.

 $\begin{array}{l} \gamma < \rho. \\ \text{Case 1. } \exists \beta' \text{ such that } \beta = \beta' + 1. \text{ then by Corollary 2.5, } \mathcal{V}_{\tau_{\alpha}q}^{\beta}(x) = \\ \mathcal{V}_{\tau_{\alpha}q}^{\beta'+1}(x) = \mathcal{V}_{\tau_{\alpha}q}^{\beta'}(\mathcal{V}_{\tau_{\alpha}q}(x)) = \mathcal{V}_{q}^{\omega^{\alpha}\beta'}(\mathcal{V}_{q}^{\omega^{\alpha}}(x)) = \mathcal{V}_{q}^{\omega^{\alpha}\beta'+1}(x) = \mathcal{V}_{q}^{\omega^{\alpha}\beta}(x). \\ \text{Case 2. } \beta \text{ is a limit ordinal. By induction hypothesis, } \mathcal{V}_{\tau_{\alpha}q}^{\gamma}(x) = \\ \mathcal{V}_{q}^{\omega^{\alpha}\gamma}(x) \text{ for } \gamma < \beta. \text{ Thus } \mathcal{V}_{\tau_{\alpha}q}^{\beta}(x) = \cap_{\gamma < \beta} \mathcal{V}_{\tau_{\alpha}q}^{\gamma}(x) = \cap_{\gamma < \beta} \mathcal{V}_{q}^{\omega^{\alpha}\gamma}(x) = \\ \mathcal{V}_{q}^{\omega^{\alpha}\beta}(x). \end{array}$

Finally, we define the lengths of decomposition series and topological series of $q \in C(X)$, $l_D q$, and $l_T q$, respectively by:

 $l_D q = \inf\{\lambda : \lambda \text{ is an ordinal such that } \pi^{\lambda} q = \pi^{\lambda+1} q\},\ l_T q = \inf\{\lambda : \lambda \text{ is an ordinal such that } \tau_{\lambda} q = \tau_{\lambda+1} q\},\$

We know that $l_D q = \inf\{\lambda : \lambda \text{ is an ordinal s.t. } I_q^{\lambda}(A) = I_q^{\lambda+1}(A), \forall A \subseteq X\} = \inf\{\lambda : \lambda \text{ is an ordinal such that } \pi^{\lambda}q = \tau q\},$

PROPOSITION 4.14. For $q \in C(X)$ and an ordinal α , (1) if $l_T q \leq \alpha$, then $\tau_{\alpha} q = \tau q$; (2) if $l_T q \leq \alpha$, then $l_D q \leq \omega^{\alpha}$. *Proof.* (1) Let $\lambda = l_T q$. Then $\tau_{\lambda} q = \tau_{\lambda+1} q = \tau q$. Since $\lambda \leq \alpha$, $\tau_{\lambda} q \geq \tau_{\alpha} q \geq \tau q$. Thus $\tau_{\alpha} q = \tau q$.

(2) Since $l_T q \leq \alpha$, $\tau_{\alpha} q = \tau q$. Thus $\pi(\tau_{\alpha} q) = \pi(\tau q)$, so $\pi^{\omega^{\alpha}} q = \tau q$. Finally, $l_D q \leq \omega^{\alpha}$.

References

- D. C. Kent, Convergence functions and their related topologies, Fund. Math. 54 (1964), 125-133.
- [2] D. C. Kent, A note on pretopologies. Fund. Math. 62 (1968), 197-205.
- [3] D. C. Kent and G. D. Richardson. 1973. The decomposition series of a convergence space. Czechoslovak Mathematical Journal.23 : 437-446.
- [4] Sang Ho Park The n-th Pretopological Modification of Convergence Spaces, Comm. Korean Math. Soc. 11 (4) (1996), 1087-1094
- [5] Scott A. Wilde, "Study and Characterization of the p-Topological Convergence Spaces", Washington State Univ., Ph.D. Thesis (1997).
- [6] Scott A. Wilde and D.C. Kent, "p-Topological and p-Regular: Dual Notions in Convergence Theory", International Journal of Mathematics and Mathematical Sciences, 22 (1) (1999), 1-12

Department of Mathematics, Colleage of Natural Science, Geongsang National University Jinju 660-701 Korea *E-mail*: sanghop@nongae.gsnu.ac.kr