Periodically domain inversion and optical properties of low-loss Ti : $LiNbO_3$ waveguides

저손실 Ti : $LiNbO_3$ 광도파로의 주기적 분극 반전과 광학특성

  • Yang, W.S. (Nano Bio-photonics Team, Korea Electronics Technology Institute) ;
  • Kwon, S.W. (Department of Materials Engineering, Hankuk Aviation University) ;
  • Lee, H.M. (Nano Bio-photonics Team, Korea Electronics Technology Institute) ;
  • Kim, W.K. (Nano Bio-photonics Team, Korea Electronics Technology Institute) ;
  • Yoon, D.H. (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Lee, H.Y. (Nano Bio-photonics Team, Korea Electronics Technology Institute)
  • 양우석 (전자부품연구원 나노바이오포토닉스팀) ;
  • 권순우 (항공대학교 항공재료학과) ;
  • 이형만 (전자부품연구원 나노바이오포토닉스팀) ;
  • 김우경 (전자부품연구원 나노바이오포토닉스팀) ;
  • 윤대호 (성균관대학교 신소재공학과) ;
  • 이한영 (전자부품연구원 나노바이오포토닉스팀)
  • Published : 2006.04.30

Abstract

Periodic electric field assisted poling low loss (${\sim}0.1dB/cm$) single-mode Ti-diffused waveguides in $LiNbO_3$ has been achieved using a periodically patterned electrode on the +Z surface of Ti : $LiNbO_3$ crystal and homogeneous LiCl solution. Using selective chemical etching, we confirmed the periodic (${\sim}16{\mu}m$) domain inverted structure and measured SH (second harmonic) properties of fabricated periodically poled Ti : $LiNbO_3$ waveguides.

저손실 Ti:$LiNbO_3$ 광도파로 기판에 외부전계 인가법을 사용하여 주기적으로 도메인을 반전시켰다. $LiNbO_3$의 -Z 면에 Ti 패턴 형성 후 약 $1060^{\circ}C$에서 열처리 과정을 통해 광도파로를 형성하였으며, 제작된 광도파로의 광전송 손실은 ${\sim}0.1dB/cm$ 였다. 도메인 반전을 위해 +Z면에 주기적인 전극 패턴을 형성하였으며, 외부전계의 균일한 인가를 위해 LiCl 전해 용액을 사용하여 도메인을 반전 시켰다. 선택적 화학식각을 통해, 약 $16{\mu}m$의 도메인 반전 주기를 확인 할 수 있었으며, 주기적 도메인 반전구조를 갖는 Ti : $LiNbO_3$ 도파로의 비선형 특성을 측정하였다.

Keywords

References

  1. K.W. Chang, A.C. Chiang, T.C. Lin, B.C. Wong, Y.H. Chen and Y.C. Huang, 'Simultaneous wavelength convesion and amplitude modulation in a monolithic periodically-poled lithium niobate', Opt. Commun. 203 (2002) 163 https://doi.org/10.1016/S0030-4018(02)01109-4
  2. L. Goldberg, J. Koplow, D.G. Lancaster, R.F. Curl and F.K. Tittel, 'Mid-infrared difference-frequency generatron source pumped by a 1.1-1.5-${\mu}m$ dual-wavelength fiber amplifier for trace-gas detection', Opt. Lett. 23 (1998) 1517 https://doi.org/10.1364/OL.23.001517
  3. D.J.L. Birkin,a) E.U. Rafailov, G.S. Sokolovskii, W. Sibbett, G.W. Ross, P.G.R. Smith and D.C. Hanna, '3.6 mW blue light by direct frequency doubling of a diode laser using an aperiodically poled lithium niobate crystal', Appl. Phys. Lett. 78 (2001) 3172 https://doi.org/10.1063/1.1354160
  4. M. Sato, P.G.R. Smith and D.C. Hanna, 'Contact electrode method for fabricating bulk periodically poled $LiNbO_3$', Electronics Letters 34 (1998) 660 https://doi.org/10.1049/el:19980451
  5. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg and J.W Pierce, 'Quasi phase-matched optical parametric oscillators in bulk periodically poled $LiNbO_3$', J. Opt. Soc. Amer. B 12 (1995) 2102 https://doi.org/10.1364/JOSAB.12.002102
  6. N. Saito, S. Wada, H. Taniguchi, M. Nakamura, Y. Urata and H. Tashiro, 'Difference-frequency generation in MgO-doped periodically poled $LiNbO_3$ using an electronically tuned Ti: sapphire laser in dual-wavelength operation', Jpn. J. Appl. Phys. 39 (2000) 1767 https://doi.org/10.1143/JJAP.39.1767
  7. K. Nakamura, J. Kurz, K. Parameswaran and M.M. Fejer, 'Periodic poling of magnesium-oxide-doped lithium niobate', J. Appl. Phy. 91 (2002) 4528 https://doi.org/10.1063/1.1456965