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Abstract

Color quantization replaces the color of each pixel with the closest representative color, and thus it makes
the resulting image partitioned into uniformly-colored regions. As a consequence, continuous, detailed
variations of color over the corresponding regions in the original image are lost through color quantization.
In this paper, we present a novel scheme for restoring such variations from a color-quantized input image.
Our scheme identifies which pairs of uniformly-colored regions in the input image should have continuous
variations of color in the resulting image. Then, such regions are seamlessly stitched using the Laplace
equation. The user can optionally indicate which regions should be separated or stitched by scribbling
constraint brushes across the regions. We demonstrate the effectiveness of our approach through diverse
examples, such as photographs, cartoons, and artistic illustrations.

1 Introduction

Color quantization is a lossy process that reduces the number of
colors in an image with a minimal visual artifact. Thus a color-
quantized image can be regarded as a degraded version of its
original. There have been many researches to restore or enhance
visual qualities of given images such as deblurring [2], noise re-
duction [8, 13], spatial super-resolution {6, 11}, image comple-
tion {3, 5], and colorization [9, 14]. However, there has been
a little effort to restore a color-quantized image. We call this
restoration image dequantization. Image dequantization is im-
portant because it can increase the visual quality of an image
comprised of a small number of colors, such as images acquired
from devices with limited color capabilities or transmitted via
narrow-band networks (See Figure 1).

According to the color quantization theory, each color in the
original image is quantized to its closest representative color.
This quantization makes the resulting image partitioned into a set
of non-overlapping, uniformly-colored regions, as illustrated in
Figure 2. Thus detailed variations of color in the regions as well
as across the neighboring regions are lost through color quan-
tization. Then, image dequantization, the inverse operation of
color quantization, calls for restoration of such continuous vari-
ations of color. In this paper, we present a novel scheme for
image dequantization. Our scheme first identifies which pairs of
uniformly-colored regions in the input image should have con-

tinuous variations in the resulting image. Then, such regions are
seamlessly stitched based on the Laplace equation. The user can
also indicate which regions should be separated or stitched seam-
lessly by scribbling constraint brushes across the regions.

1.1 Related Work

The problem of reducing degradation and noise in images has
been addressed for a long time. Early approaches have used spa-
tial filtering techniques such as median and Winer filter. These
approaches were extended to Kalman filter for multiple chan-
nels [8] and a fuzzy smoothing operation [12]. Beyond reducing
a noise channel, researches have been focused on reconstruct-
ing images of higher spatial resolution based on the observed
features in the input images. Borman and Stevenson [4] have
combined multiple low-resolution images obtained at sub-pixel
displacements. Freeman et al. [6] have exploited the stored high-
resolution patch corresponding to every possible low-resolution
image patch. Baker and Kanade [1] have enhanced salient fea-
tures recognized in the low resolution images.

Another important issue is completing irregular missing por-
tions caused by removing foreground or background objects from
an image. Bertalmio et al. [3] have used PDE-based approach
and Drori et al. [5] have adopted texture synthesis at the image
patch level. Colorizing a gray-scale image has also been a topic
of considerable interest. Welsh et al. [14] have determined color
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Figure 1: Image dequantization restores continuous variations of color in a quantized image. The images (top row) with a small
number of bits per channel are restored using our method so as to exhibit continuous variations of color in the resulting images

(bottom row).

of each pixel from those with matching neighborhoods in exam-
ples. Levin et al. [9] have formulated an optimization problem
based on the premise that neighboring pixels with similar inten-
sities should have similar colors.

Although a lot of approaches for image restoration have been
proposed, to our knowledge, there have been a few attempts
to automatically recover an original image from a given color-
quantized image. For image quantization with two colors, that is,
dithering, noise reduction methods have been successively ap-
plied [13]. For more than two colors, Fung and Chan [7] devel-
oped a regularized method that iteratively refines a given quan-
tized image so that each pixel has a similar color with its neigh-
boring pixels while preserving its closest representative color.
However, this method attempts to seamlessly stitch adjacent re-
gions that should be separated, because smoothing for a pixel
involves all of its neighboring pixels that may belong to different
objects.

2 Inverse Quantization

2.1 Observation

In color quantization of an image, a set of its representative
color vectors is firstly selected. Then, the color vector of each
pixel in the image is quantized to its closest one from the set
of representative color vectors, based on the Euclidean distance.
Consequently, the color space is partitioned into a set of non-
overlapping Voronoi cells, each of which corresponds to the
representative color. This color quantization also partitions the
resulting image into a set of non-overlapping regions, each of
which consists of pixels of the same color, as illustrated in Fig-
ure 2. Thus, the detailed variation of color in each region is lost
through color quantization. Then, image dequantization, the in-
verse operation of color quantization, calls for restoration of such
a continuous variation of color in each uniformly-colored region
of the quantized image.

Before addressing dequantization of uniformly-colored re-
gions, we first need to examine their adjacency relationships not
only in the image space but also in the color space. For a pair
of uniformly-colored regions adjacent in the image space, their
corresponding Voronoi cells in the color space can be either (1)
adjacent or (2) not adjacent. In the first case, we would expect a
seamless variation of color across the edge between the two re-
gions. However, in the second case, discontinuities at the edge
would be preferred because it could be thought of as an edge in
the original image. We call the first type of edge soft and the
second hard. Note that soft edges are caused by quantization
whereas hard edges have been existing before quantization.

We now examine pixels on soft edges more precisely. Sup-
pose that two neighboring pixels induces a soft edge in the im-
age space as illustrated in Figure 3. Then, their original colors
must have been located near the Voronoi edge between their cor-
responding Voronoi cells in the color space. Thus, it is natural to
infer the unknown original colors from the average of their quan-
tized colors. In contrast, for pixels on hard edges, we assume that
their original colors and quantized colors would be the same.

Based on the above observations, we conclude that image de-
quantization is to enforce continuous variations of color not only
over uniformly-colored regions but also across soft edges, while
preserving discontinuities at hard edges. For continuous varia-
tions of color, we are to employ Laplace’s equation with Dirich-
let boundary conditions. Recall that pixels inducing a hard edge
are desired to retain their quantized colors, and pixels inducing a
soft edge are desired to have the average of their quantized colors.
These will be used as Dirichlet boundary conditions.

2.2 Formulation with Laplace’s Equation

Before introducing image dequantization using Laplace’s equa-
tion, we first define necessary notations. For a pixel p, let N(p)
be a set of its 4-connected neighbors. Then, the boundary OR;
of a uniformly-colored region R; can be defined as follows: For
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Figure 2: An image with red to green gradation (top) is quantized
with 8 colors (middle). Our image dequantization algorithm (bot-
tom) restores the original gradation successfully.

a pair of pixels (p, q) such that p € R;, q € N(p) but q ¢ R,
we introduce a virtual pixel v q = (p + q)/2 and let it belong
to the boundary OR;. If the Voronoi cells corresponding to the
pixels p and q are adjacent in the color space, then the virtual
pixel vp, o is interpreted as a part of a soft edge (triangular pix-
els in Figure 3). Otherwise, it is interpreted as a part of a hard
edge (square pixels in Figure 3). Thus, the boundary OR; con-
sist of soft edges and hard edges, and it can be thought of as an
interface between neighboring regions.

Now, we detail image dequantization using Laplace’s equa-
tion. As it is enough to solve the image dequantization problem
for each color channel independently, we consider only scalar
image functions. For a uniformly-colored region R;, let ¢ be the
unknown scalar function to be defined over R; U OR;. We first
define a scalar function * over OR; for boundary conditions: if
a virtual pixel vp ¢ is on a hard edge of IR;, ©*(Vvp,q) is set to
the current, quantized color of p € R;; otherwise, ¢*(vp q) is
set to the average color of the pixels p and g. This averaging al-
lows continuous variations of color across the three consecutive
pixels p, vy, o, and q. Finally, we fill the region R; with a contin-
uous variation of color by solving the following Euler-Lagrange
equation:

Ag = 0 over R; with ¢|or, = ¢*|or;> 1)

_ 8t 8 ” 1
where A = 55 + B2 18 the Laplacian operator.

To build a linear system for Equation (1), we need to com-
pute the second partial derivative of ¢ with respect to z and also
with respect to y. A virtual pixel on the boundary OR; is 0.5
pixel apart from a pixel in the region R; along either the z- or y-
direction in the image space. Suppose that three pixels p, q, r are
consecutive along the z-direction. When only r is a virtual pixel
on the boundary dR; for instance, the step sizes for differentia-
tion are 1.0 between p and q and 0.5 between q and r. The deriv-
ative at g can be obtained by differentiating the Lagrange inter-
polation polynomial that passes through (—1.0, ¢(p)), (0, »(q)),
and (0.5, ¢(r)). Summarizing all the cases, the second partial

Three Laplace equations of the form (1) are solved independently in the three
color channels of the chosen color space. We have obtained all the results in
the RGB color space because commonly available color-quantized images have
been processed in that space. According to our experiments, similar results were
obtained in the YUV color space for instance.

Image Space

Color Space

Figure 3: The boundary of the gray-colored region consists of
soft edges (drawn in dashed lines) and hard edges (drawn in solid
lines).

derivative is given as follows:

o(p) — 2¢(aq) + ¢(r) ifp ¢ OR;,r ¢ OR;,
| _ ) 5e(p) —4e(a) + §e(r) ifp ¢ ORsr € IR,
da%| ) Se(p) - dpla) + 2o(r) ifpedRir¢ IR,

4o(p) — 8p(q) + 4p(r) ifp e dR;,r € OR;.

2
The second partial derivative of ¢ with respect to y is of the
same form except that three pixels are consecutive along the y-
direction.

Applying the above formula to Equation (1) for the region R;

yields a linear system of the following form:

Ax; = by, 3
where x; consists of all the unknown image function values ¢
of the region R;, and the matrix A; is sparse, symmetric, and
positive-definite. Here, we note that the image function values ¢
on the boundary 8R; are the same with ¢~ as specified in Equa-
tion (1) and they are involved with only b;. As a consequence, we
build the linear systems of the form (3) for all the regions inde-
pendently, and then assemble them into a large, sparse, symmet-
ric, and positive definite linear system so as to solve the system
efficiently with standard methods employed in [9, 10].

An example of image dequantization is illustrated in Figure 2.
We obtained a red to green gradation image using Adobe Photo-
shop and then quantized it with 8 colors. Our image dequanti-
zation method restores the original gradation successfully in that
we can hardly notice the difference between the dequantized im-
age and the original. In this example, there are only soft edges
that allow continuous variations of colors. Figure 4 shows more
complex examples, where the color-quantized input images have
not only soft edges but also hard edges. We can observe that the
dequantized images preserve discontinuities at hard edges suc-
cessfully. Our method can also be used for network-based imag-
ing with progressive n-bit quantization. In this scheme, consec-
utive 7 bits starting from the most significant one for each color
channel are used for progressive improvement of the image. Fig-
ure 1 exhibits that our method produces an image with quite good
quality even with 3 bits per channel for each pixel.
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Figure 4: Comparison of color-quantized input, dequantized, and original images.
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Figure 5: Interactive dequantization with annotations.

2.3 Interactive Annotation

The type of the edge between two neighboring regions has been
classified into either soft or hard, solely based on the adjacency
of their corresponding Voronoi cells in the color space. How-
ever, there are situations where it is desirable to override some
adjacency relationships interactively. For example, in Figure 5,
the fur of the sheep has very fine details even with quantized col-
ors, however such fine details are lost in the dequantized image.
This is because the Voronoi cells corresponding to the quantized
colors of the fur are adjacent in the color space. We provide inter-
active annotation that overrides the adjacency relationships in the
color space. The magenta brush is to annotate that the Voronoi
cells corresponding to the quantized colors under the brush are
not adjacent. The blue brush is to annotate the reverse; distant
Voronoi cells are treated as if they are adjacent.

Interactive annotation can also be used for cartoons and artistic
illustrations, in which artists carefully select representative col-
ors to shade objects with similar but somewhat different colors.
Figure 6 shows a cartoon image dequantized with annotations. In
this example, we introduced new brushes that override the type
of the edge only in the image space; the type of the edge anno-
tated with a green (red) brush is turned into a hard (soft) edge. In
cartoon-shaded images, hard edges can also be utilized for deco-
ration of the resulting images, as illustrated in Figure 7.

2.4 Continuity Constraints

Our image dequantization method guarantees only C° continuity
between two neighboring regions. This limited continuity is not
perceptible when the intensity change between the two regions is
relatively small. However, when the intensity change is relatively
large as the inside of the teapot in Figure 8, Laplace’s equation
with Dirichlet boundary conditions may produce an unsatisfac-
tory result. The Mach band effect is observed inside the dequan-
tized teapot. To reduce such an illusion, we introduce additional
continuity constraints.

Suppose that p, vp o, q are three pixels consecutive along the
z-direction in the image space. As the notation indicates vy, is

Input Image A

Figure 6: A cartoon-shaded image is dequantized interactively.

f
2
<~y
Input Image

Image + Edge

Figure 7: Hard edges are drawn for cartoon shading.

the virtual pixel considered as a part of a soft edge. Then, we
impose a new continuity constraint on the image function values
at p and q such that the backward and forward differences of
intensity at v,4 should be the same:

@

In the same vein, we also add continuity constraints along the
y-direction. These additional constraints result in an overdeter-
mined system of linear equations. By multiplying a weighting
factor w to the constraint equations, we control the significance
of continuity at boundaries, as illustrated in Figure 8.

@(p) + ¢(q) = 2¢" (Vpq)-

3 Summary

We have presented a novel scheme for restoring a color-quantized
input image that consists of uniformly-colored regions. Consid-
ering adjacency relationships of the regions in the image space
as well as in the color space, our scheme classifies the region
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Input Dequantized with w = 0

Dequantized with w = 0.2

Dequantized with » = 0.3

Figure 8: The Mach band illusion (w = 0) disappears through
the use of additional continuity constraints (w # 0).

boundaries into soft and hard. Together with this classifica-
tion, Laplace’s equation is employed for continuous variations
of color not only over uniformly-colored regions but also across
soft boundaries between neighboring regions, while preserving
discontinuities at hard boundaries. The user can optionally over-
rides the classification result by scribbling brushes across the re-
gions. We have demonstrated the effectiveness of our approach
through diverse examples, such as photographs, cartoons, and
artistic illustrations.
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