DOI QR코드

DOI QR Code

An Efficient High-Frequency Vibration Analysis of Floors in Building Structures

고차의 진동하중을 받는 건축물 바닥판의 효율적인 진동해석

  • 이동근 (성균관대학교 건축공학과) ;
  • 김태호 (성균관대학교 건축공학과)
  • Published : 2006.10.30

Abstract

The object of this study is to propose the efficient method for analyzing the building floors subjected to the loading with high frequency contents. For this purpose, the method for mesh division and the selection of master DOF for FE model of building floors with these loadings are studied. Also, it is verified that the availability of thin plate element that is used by structural engineers for the modelling of the building floor of which the span-thickness ratio is usually ten times and over. And the possibility and limit of the equivalent plate which is already studied by other researcher for the multi-layer plate are investigated. At last, proposed modelling method is examined by the example structure.

본 연구의 목적은 높은 진동수 성분의 진동원을 가지는 건축물의 바닥판을 효율적으로 해석하는 방법을 제시하는 것이다. 이를 위하여 고차진동하중을 받는 건축물의 바닥판에 적절한 요소분할 방법과 이에 따른 과도한 자유도를 줄이기 위한 자유도 선택방법에 대하여 연구하였다. 그리고 일반적으로 건축물의 바닥판의 경우에는 두께에 비하여 바닥판의 길이가 길기 때문에 전단변형이 고려되지 않은 판요소를 바닥판의 모형화에 많이 사용하는데 이에 대해서도 그 적절성을 검증하였다. 그리고 여러 개의 층으로 이루어진 건축물 바닥판을 기존의 방법을 이용하여 등가의 바닥판으로 치환하였으며 이 방법의 가능성과 한계를 검토하였고 마지막으로는 예제 구조물을 중심으로 제안한 모형화 방법의 효율성을 확인하였다.

Keywords

References

  1. El-Dardiry, E. and Ji, T., 'Modelling of the dynamic behaviour of profiled complsite floors,' Engineering Structures, Vol. 28, 2006, pp. 567-579 https://doi.org/10.1016/j.engstruct.2005.09.012
  2. Ebrahimpour, A and Sack, R. L., 'A review of vibration serviceability criteria for floor structures,' Computer and Structures, Vol. 83, 2005, pp. 2488-2494 https://doi.org/10.1016/j.compstruc.2005.03.023
  3. Pavic, A. and Reynolds, P., 'Modal testing and dynamic FE model correlation and updating of a prototype highstrength concrete floor,' Cement and Concrete Composites, Vol. 25, 2003, pp. 787-799 https://doi.org/10.1016/S0958-9465(02)00100-2
  4. da Silva, J. G. S., da S. Vellasco, P. C. G., de Andrade, S. A. L., da C. P. Soeiro, F. J. and Wemeck, R. N., 'An evaluation of the dynamical performance of composite slabs,' Computer and Structures, Vol. 81, 2003, pp. 1905-1913 https://doi.org/10.1016/S0045-7949(03)00210-4
  5. Howard, C. Q. and Hansen, C. H., 'Vibration analysis of waffle floors,' Computer and Structures, Vol. 81, 2003, pp. 15-26 https://doi.org/10.1016/S0045-7949(02)00348-6
  6. Pavic, A., Reynolds, P., Waldron, P. and Bennett, K., 'Dynamic modelling of post-tensioned concrete floors using finite element analysis,' Finite Elements in Analysis and Design, Vol. 37, 2001, pp. 305-323 https://doi.org/10.1016/S0168-874X(00)00045-7
  7. Weaver, W. and Johnston, P. R., FINITE ELEMENTS FOR STRUCTURAL ANALYSIS, Prentice-Hall, Inc., 1984, pp. 77-82, 205-209
  8. Kwon, Y. W. and Bang, H. C, THE FINITE ELEMENT METHOD Using MATLAB, CRC Press, 2000, pp. 77-82, 370-401
  9. Bachmann, H. and Ammann, W., Vibration in Structures, IABSE, 1987
  10. ISO 140-7, Field measurements of impact sound insulation of floors. International Organization for Standardization, 1998
  11. Lee, D. G., Ahn, S. K. and Kim, J. K., 'An Efficient Modeling Technique for Floor Vibration in Multi-story Buildings,' Structural Engineering and Mechanics, Vol. 10, No.6, 2000, pp. 603-619 https://doi.org/10.12989/sem.2000.10.6.603
  12. Ramsden, J. N. and Stocker, J. R., 'Mass Condensation a Semi- Automatic Method for Reducing the Size of Vibration Problems,' Int. J. Numer. Meth. Eng., Vol. 1, 1969, pp. 333-349 https://doi.org/10.1002/nme.1620010403
  13. Levy, R., Guyan Reduction Solutions Recycledfor Improved Accuracy, NASTRAN Users Experiences, NASA, 1971, pp. 201-220
  14. Shah, V. N. and Raymund, M., 'Analytical Selection of Masters for Reduced Eigenvalue Problems,' Int. J. Numer. Mech. Eng., Vol. 18, 1982, pp. 89-98 https://doi.org/10.1002/nme.1620180108
  15. Down, B., 'Accurate Reduction of Stiffuess and Mass Matrices for Vibration Analysis and a Rational for Selecting Master Degrees of Freedom,' J. Mech. Design, ASME, 1980, p. 102
  16. Weaver, W. and Johnston, P. R., Structural Dynamics by Finite Elements, Prentice-Hall, Inc., 1987, pp. 282-283
  17. de Faria, A. R. and Oguamanam, D. C. D., 'Finite element analysis of the dynamic response of plates under traversing loads using adaptive meshes,' Thin-Walled Structures, Vol. 42, 2004, pp. 1481-1493 https://doi.org/10.1016/j.tws.2004.03.012
  18. Thompson, L. L., 'On optimal stabilized MITC4 plate bending elements for accurate frequency response analysis,' Computers & Structures, Vol. 91, 2004, pp. 995-1008
  19. Ugural, A. C., STRESSES IN PLATES AND SHELLS, Mcgraw-Hill, 1999, pp. 253-280
  20. Lee, H. W. and Park, I. G., MIDAS/GEN-General structure design system for windows, MIDAS Information Technology, 2001