DOI QR코드

DOI QR Code

A Study on Base Isolation Performance of Magneto-Sensitive Rubbers

자기민감 고무를 이용한 구조물의 면진성능 연구

  • Published : 2006.08.31

Abstract

Recently, as large structures such as high-rise building and long span bridge become lighter and more flexible, the necessity of structural control for reducing excessive dynamic response due to seismic excitation is increased. In this study, a semi-active base isolation system using Magneto-Sensitive (MS) rubbers is proposed to effectively protect structures against earthquakes. MS Rubber is a class of smart controllable materials whose mechanical properties change instantly by the application of a magnetic field. To demonstrate the performance of this device, the MS Rubber isolation system is compared to Lead-Rubber Bearing (LRB) isolation systems and judged based on computed responses to several historical earthquakes. The MS Rubber isolation system is shown to achieve notable decreases in base drifts over comparable passive systems with no accompanying increase in base shears or in accelerations imparted to the superstructure. The proposed MS Rubber system is shown to perform better than the passive isolation system.

최근 들어 지진발생 빈도의 증가와 더불어 초고층 빌딩, 장대교량 등과 같은 대형구조물의 경량화, 유연화로 인해 발생하는 구조물의 과도한 동적거동을 효과적으로 제어할 수 있는 제진시스템의 필요성이 증가하고 있다. 본 연구에서는 지진으로부터 구조물을 보다 효과적으로 보호하기 위해 자기장에 의해 역학적 성질을 변화시킬 수 있는 제어가 가능한 지능형재료인 자기민감 고무(Magneto-Sensitive Rubber)를 이용한 반 능동 기초격리 시스템을 제안하였다. 제안된 기초격리 시스템은 기존의 LRB(Lead-Rubber Bearing) 시스템과의 비교 분석을 통해 면진성능을 평가하였으며 이를 위해 몇 가지 역사적 지진들을 이용수치해석을 수행하였다. 제안된 자기민감 고무를 이용한 반 능동 기초격린 시스템은 기존의 수동 시스템보다 기초전단력이나 상부구조물에 가속도 전달을 차단함과 동시에 기초변위를 현저하게 감소시킬 수 있음을 보였다. 그러므로 자가민감 고무를 이용한 반 능동 기초격리 시스템은 지진으로부터 구조물을 효과적으로 보호할 수 있을 것으로 사료된다.

Keywords

References

  1. Kelly, J.M., 'A seismic base isolation: Review and Bibliography,' Soil dynamics and Earthquake Engineering, Vol. 5, 1986, pp. 202-216 https://doi.org/10.1016/0267-7261(86)90006-0
  2. Su, L. and Ahmadi, G., 'A comparative study of performances of various base isolation systems, Part 1: Shear beam structures,' Earthquake Engineering and Structural Dynamics, Vol. 18, 1989, pp. 11-32 https://doi.org/10.1002/eqe.4290180104
  3. Kelly, J.M., Leitmann, G. and Soldatos, A.G., 'Robust control of base-isolated structures under earthquake excitation,' Journal of Optimization Theory and Applications, Vol. 53, 1987, pp. 159-180 https://doi.org/10.1007/BF00939213
  4. Yang, G., RamaIlo, J.C., Spencer, Jr., B.F., Carlson, J.D. and Sain, M.K., 'Large-scale MR fluid dampers: dynamic performance considerations,' Proceedings of International Conference on Advances in Structure Dynamics, Hong Kong, China, Vol. 1, 2000, pp. 341-348
  5. Nishimura, H. and Kojima, A., 'Robust Vibration Isolation Control for a Seismically Excited Building,' Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, Vol. 2, 1998, pp. 1399-1406
  6. Gavin, H.P., Hanson, R.D. and Filisko, F.E, 'Electrorheological Dampers Paart 1: Analysis and Design,' Journal of Applied Mechanics, ASME, Vol. 63, 1996, pp. 669-675 https://doi.org/10.1115/1.2823348
  7. Dyke, S.J, Spencer, Jr., B.F., Sain, M.K. and Carlson, J.D., 'Modeling and control of magnetorheological dampers for seismic response reduction,' Smart Materials and Structures, Vol. 5, 1996, pp. 565-575 https://doi.org/10.1088/0964-1726/5/5/006
  8. Makris, N., 'Rigidity-Plasticity-Viscosity: Can Electrorheological Dampers Protect Base-Isolated Structures from Near Source Earthquakes,' Earthquake Engineering and Structural Dynamics, Vol. 26, 1997, pp. 1399-1406
  9. Spencer, Jr., B.F., Dyke, S.J., Sain, M.K. and Carlson,J.D.,'Phenomenological model of a magnetorheological damper,' Journal of Engineering Mechanics, ASCE, Vol. 123, 1997, pp. 230-238 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  10. Kordonsky, W., 'Magnetorheological effects as a base of new devices and technologies,' J. Mag. & Mag. Mat, Vol. 122, 1993, pp. 395-398 https://doi.org/10.1016/0304-8853(93)91117-P
  11. Jolly, M.R., Carlson, J.D. and Munoz, B.C., 'A model of the behaviour of magnetorheological materials,' Smart Material Structures, Vol, 2, 1996, pp. 607-614
  12. Carlson J.D. and Jolly M.R., 'MR fluid, form and elastomer devices,' Machatronics, Vol. 10, 2000, pp. 55-69
  13. Brigadnov, l.A. and Dorfmann, A., 'Mathmatical modeling of magneto-sensitive elastomers,' International Journal of Solids and Structures, Vol. 40, 2003, pp. 4659-4674 https://doi.org/10.1016/S0020-7683(03)00265-8
  14. Dorfmann, A. and Ogden, R.W., 'Magnetoelastic modelling of elastomers,' European Journal of Mechanics, Vol. 22, 2003, pp. 497-507 https://doi.org/10.1016/S0997-7538(03)00067-6
  15. Kari, L. and Blom, P., 'Magneto-sensitive rubber in a noise reduction context -exploring the potential,' Plastic, Rubber and Composites, Vol. 34, No.8, 2005, pp. 365-371 https://doi.org/10.1179/174328905X59692

Cited by

  1. A feasibility study on smart base isolation systems using magneto-rheological elastomers vol.32, pp.6, 2009, https://doi.org/10.12989/sem.2009.32.6.755
  2. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology vol.107, pp.11, 2015, https://doi.org/10.1063/1.4931127