DOI QR코드

DOI QR Code

The Nonlinear Direct Spectrum Method Improving Application and Reliability of Existing Approximate Nonlinear Methods

기존 비선형약산법들의 신뢰성 개선을 위한 비선형직접스펙트럼법

  • 김재웅 (동아대학교 건축학부) ;
  • 강병두 (거창전문대학 건축.인테리어과) ;
  • 전대한 (동서대학교 건설공학부)
  • Published : 2006.08.31

Abstract

This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}/g$ and/or ductility ratio p from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method. The conclusions of this study are as follows; (1) Nonlinear direct spectrum method is considered as a practical method which is applicable to compute the structural initial elastic period and the yielding strength from stiffness skeleton owe and calculate the nonlinear maximum response of structure directly from nonlinear response spectrum. (2) The comparison of the analysis results from NDSM and NRHA showed that the average errors were less than 20% in about 3/4 of the analysis cases, and that the results obtained from NDSM turned out to be generally larger than those from NRHA.

본 연구에서는 강성골격곡선으로부터 산정한 구조물의 초기 탄성진동주기 $T_1$와 응답스트럼으로부터 산정한 비선형 유사가속도 $A_{1y}/g$ 및 연성비 ${\mu}$를 사용하여, 반복적인 계산과정 없이 복합구조물의 내진성능을 평가하는 비선형직접스펙트럼법(NDSM)을 고려한다. 다양한 지진과 복합구조물에 대한 NDSM의 신뢰성과 실용성을 비선형시각이력해석(NRHA) 결과와 비교 검토하였다. 본 연구의 결론은 다음과 같다. (1) NDSM은 강성골격곡선으로부터 기본진동주기와 비선형 항복강도를 구하면, 비선형 응답스펙트럼으로부터 직접적으로 구조물의 비선형 최대응답을 산정할 수 있는 실용적인 방법으로 사료된다. (2) NDSM의 응답을 정산해와 비교한 결과, 대부분의 모델이 단순평균의 관점에서 전체 해석모델 중 3/4이 약 20% 이하의 오차를 나타내었고, 일반적으로 비선형시각이력해석의 응답보다 크게 산정되는 것으로 나타났다.

Keywords

References

  1. Applied Technology Council, 'Seismic evaluation and retrofit of concrete buildings,' Report ATC-40. November, 1996, 319pp
  2. FEMA, 'NEHRP Guidelines for the Seismic Rehabilitation of Buildings,' Report No. FEMA-273, Federal Emergency Management Agency, Washington D.C., 1997, 439pp
  3. Chopra, A. K. and Goel, R. K., 'Capacity-demand- diagram methods for estimating seismic deformation of inelastic structures: SDF systems,' Report No. PEER-1999/02, Pacific Earthquake Engineering Research Center, University of Berkeley, Berkeley, 1999, 67pp
  4. Fajfar, P., 'Capacity spectrum method based on inelastic demand spectra,' Earthquake engineering and Structural Dynamics, Vol. 28, 1999, pp. 979-993 https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
  5. Vidic, T., Fajfar, P. and Fischinger, M. 'Consistent inelastic design spectra : strength and displacement,' Earthquake Engineering and Structural Dynamics, Vol. 23, 1994, pp. 502-521
  6. Reinhorn, A. M. 'Inelastic analysis techniques in seismic evaluations,' Seismic design methodologies for the next generation of codes, eds. P. Fajfar and H. Krawinkler, Rotterdam, Balkema, 1997, pp. 277-287
  7. 한국콘크리트학회, 콘크리트구조설계기준해설, 기문당, 2000, 295pp
  8. MIDAS IT, MIDAS/GENw Ver. 4.3.2. User's Manual Vol. I, MIDAS IT Co., Ltd, 2000
  9. Li, Kang-Ning, CANNY 99, 3-dimensional nonlinear static/dynamic structural analysis computer program-users manual, CANNY Structural Analysis, CANADA, 2000, 215pp
  10. Mehmet Inel, Erich M, Bretz, Edgar F. Black, Mark A. Aschheim and Daniel P. Abrams, USEE 2001 : Utility Software for earthquake engineering report and user's manual, Civil and Environmental Engineering, University of Illinois at Urbana-Campaign, Urbana, Illinois, October, 2001, 88pp
  11. Chopra, A. K. and Goel, R. K., 'A modal pushover analysis procedure to estimate seismic demands for buildings: Theory and preliminary evaluation,' Report No. PEER-2001/03, Pacific Earthquake Engineering Research Center, University of Berkeley, Berkeley, 2001, 87pp
  12. Chopra, A. K., Dynamics of structures: theory and applications to earthquake engineering, Prentice Hall, New Jersey, 2001, 844pp
  13. Otani, S. and Matsumori, T. 'Correlation of Damage and Analysis: Experience from the 1995 Kobe Earthquake,' Proceedings of 7th International Conference on Computing in Civil and Building Engineering, Seoul, Korea, 1997. 8, pp. 841-856
  14. Valles, R., Reinhorn, A., Kunnath, S., La C. and Madan, A., IDARC 2D Version 4.0 : A program for the inelastic damage analysis of buildings, NCEER-96-0010, National Center for Earthquake Engineering Research, Buffalo, NY, 1996, 237pp
  15. FEMA 'Evaluation of earthquake damaged concrete and masonry wall buildings-Technical resources,' Report No. FEMA-307, Federal Emergency Management Agency, Washington D.C., 1998, 254pp
  16. 이한선 외, '복합구조(전단벽+골조)의 내진설계기법 연구', 건교부 '98연구개발사업 보고서, R&D 98-0003, 한국건설기술연구원, 1999, 366pp
  17. 대한건축학회, 건축물 하중기준 및 해설, 태림문화사 2000, 345pp
  18. 강병두, '상부벽식-하부골조 복합구조물의 비선형 내진성능에 관한 연구',박사학위논문, 동아대학교, 2003, 259pp
  19. 김용주, 강병두, 전대한, 김재웅, '비선형구조물의 지진응답평가를 위한 직접스펙트럼법', 대한건축학회 추계학술발표대회 논문집, 제21권, 제2호, 2001, pp. 119-122
  20. 김재웅, 강병두, 전대한, '비선형 약산법들에 의한 전단형 건물의 지진응답평가', 한국지진공학회 논문집, 제9권, 제5호, 2005, pp. 75-86 https://doi.org/10.5000/EESK.2005.9.5.075