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Nonparametric Tests for Grouped A-Sample Problem

Hyo-11 ParkV

Abstract

We propose a nonparametric test procedure for the A-sample problem with
grouped data. We construct the test statistics using the scores derived for the
linear model based on likelihood ratio principle and obtain asymptotic distribution.
Also we illustrate our procedure with an example. Finally we discuss some
concluding remarks.

Keywords . Grouped data, K-sample problem; Nonparametric test; Permutation
principle.

1. Introduction

Suppose that we have independent K(>3) samples Xy, X, ..., X, Wwith

unknown distribution functions F,, k=1,..., K We assume that the unknown
distribution function F, is continuous with a density f;, for each k. Then our

interest is to test the following hypotheses:
Hy:F,=..=Fy= F versus H, ' at “least” one equality does “not” hold.

We note that this corresponds to the two sample problem when K'=2 and a lot
of nonparametric test procedures have been proposed including the Wilcoxon rank
sum test. For K > 3, the well-known Kruskal-Wallis test can be applied as a
nonparametric procedure. In addition, in this study, we consider the following
situations. For the study of life times of light-bulb, we may decide to observe the
failure time of each bulb by visiting laboratory periodically because of economic or
any other reasons. Or for some specific part of a machine, one may decide to
inspect the machine periodically whether the specific part fails after we run the
machine for some fixed time. Therefore according to the pre—determined time
schedule, we observe each object under study whether it fails or not. In these
cases, the data become categorized in spite of continuity of the life time
distribution. We «call those as the grouped data. Heitjan (1989) reviewed
extensively the traces of the development of statistical inferences for the grouped

1) Professor, Department of Statistics, Chong—ju University, Chong-ju, Choong-book
360-764, Korea. E-mail : hipark@cju.ac.kr



410 Hyo-1l Park

data in parametric setting and indicated some of the major unsolved questions in
grouped data theory and application aspects. Based on this kind of data, for
testing H,:F, = .= Fy= F, as a nonparametric procedure, one may apply the
Pearson’s chi-square test which is a goodness—of-fit test for the categorical data.
Or one may use the Kruskal-Wallis test by using the mid-rank among the
observations which lie in the same sub-interval as an ad hoc approach. However
in case of A'=2, one may apply the Puri and Sen’'s procedure (1985) to the
grouped data. Puri and Sen proposed a class of nonparametric tests for the linear
model. They derived the test statistics using the Ilikelihood ratio principle.
Therefore the tests may be locally most powerful. Also Park (1993) considered a
class of nonparametric tests for the grouped and right censored data along with
the idea of Puri and Sen.

In this paper, we consider to propose a nonparametric test procedure for the K-
sample problem for the grouped data. Before we make a start on the construction
of our procedure, in order to provide some ideas of development of the test, we
begin our discussion with reviewing some results for the two sample problem.

2. Nonparametric Tests

We begin this section with some review of the results in case of K=2. Since
we are interested in the life time data, without loss of generality, we consider the
positive half real line. Suppose that the positive half real line [0,o0) is partitioned
into d sub-intervals [aj, ajﬂ) for any fixed time a; j=1,...,d with the notation
that a, =0 and a,,, = . We note that we can not observe X;; directly but only

have the information that X, can be contained in one of d sub-intervals. Thus

for each k=1,2 and for each :=1,..,n;, each observable random variable, X,:,-,

can be expressed as
d
Xy = E Zkij .
i=1
where for every k, ¢ and j=1,...,d
7 = {1, X, € [aj,aﬁl)'
kij 0, otherwise
Then for testing H,:F, = F, against H, :F, = F, based on the following two

samples, X1*17---7X;n1 and X;,.,,,X;,,z, Puri and Sen (1985) proposed the

following linear rank statistic of the form
nyod

d
T,= Z EAanuj = L-:Anj 145
=

i=1j=1
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where A, is some score for the observations in the jth sub-interval [aj,a]+1)
and will be explicitly defined later and n,;, the number of observations of the first
sample in the jth sub-interval [aja;,,). Then one may reject H,:F, =F, in
favor of H,:F, = F, for large values of |T,—E,(T,)|, where E,(T,) is the
expectation value of 7, under H;, which will be identified later also. For any

given significance level, in order to determine the critical value, we need the null
distribution of 7). Then by applying the permutation method (cf. Good, 2000), we

may obtain a null distribution for reasonable sample sizes. For large sample case,
in order to derive the asymptotic normality, we have to obtain mean and variance
of 7, under H,. From Puri and Sen (1985), we have

S+ _
_nIEA bR

=n, A
nj n1+n2 1% n

and
d
wi) = (B - 3

where n,; is the number of observations of the second sample in interval
laja;+,). Then we can show that the standardized form

_ T,-E(T,)

" VR
converges in distribution to a standard normal random variable by applying the
central limit theorem and Slutsky’s theorem. You may refer to Puri and Sen
(1985) for more detailed discussion for this subject.

Now we discuss the score function A, ; in some detail. For this purpose, let

#(u), 0 <u <1 be any square-integrable function and define for each j=1,..,d,

A 1 /F (a_,+1)¢ )d
nj = 7 = R ujau,
! F?l(aj+1)_F,)(a’j) F,,(dvl)

where if’” is the empirical distribution function of the underlying distribution

function F based on the combined sample from the two samples. We note that if
dplu)=u, A, ; is the Wilcoxon score. Therefore one may obtain a class of

nonparametric test statistics with various choice of the score function ¢. As a
matter of fact, Puri and Sen (1985) derived the optimal score functions using the
likelihood ratio principle. The optimal score functions are of the following form: for

AT /mm)
j— ( _]+1 F )

where  ¥(u)=—f"(F '(u))/f(F '(«)) with the notation that F Yu)=

each j=1,..,d,
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inf{t: F(t) > u} for 0<u<1 and f  is the derivative of f. Therefore if the
underlying distribution function F were completely known, then we might obtain a

locally most powerful test procedure using A ]-*. In the nonparametric case, since F

and hence v(u) as well as A; are unknown, one may try to obtain

asymptotically the; optimal scores by substituting j«“n for F with suitable choice of
¢. This may be achieved by using A,; when we do not have any information
about 7. However if one has any information about F, one can also construct a
locally most powerful test by using A,; with ¢=1. For example, if the
underlying distribution function F has a logistic density, then we may choose
du)=2u—1

in A, to produce the locally most powerful nonparametric test, which is again
the Wilcoxon score for the two sample case.

Form now, we consider an extension of the linear rank test procedure for the
two sample case to the multi-sample(X > 3) problem for the grouped data. For
this purpose, let for each &, k=1,. ., K,

;e

d
Tlm E EAn]Zlu] ZlAnjnkj
J=

i=1j=1

be the linear rank statistic from the kth sample, where o is the number of

observations in the jth interval from the kth sample. Then we have that

d n. . .
‘E’O(ﬂ:n) = nkEAnj———-J—: nkAn

i=1 n

and

n—mny [ & n.;
I/v()(Tkn):nk {EAQ__J_A;}’

— nj
n—1 /= n

X
where n.;= kz—]lnkj and nZkZ]] n,. Also for any k=1l the null covariance

Covy(Ty,,, T,,) between T, and 7,, is as follows:

Lnl d .
CO’I)O ( TL,n’ 1771 - . n]

All the derivations of the above momentb are based on the permutation
principle. The derivation of Cov,(T},,7,) will be postponed until the appendix.

Let X,, be the null covariance matrix of (71, o ... Txy) - Then we have the

following result.

Lemma 1. For each n, the covariance matrix X, has a rank A—1.
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Proof. This can be proved by the fact that the elementary row or column
operations do not affect the rank (cf. Schott, 1997). For this, we note that

n,(n—n;) Ny

n—-1 " n-1 d n . _ d n . _
Zon = {ZAZj——;i—Ai}=SH{ZAiJ AJ_A;‘;}.
nng  ngln—mng) [U=1 i=1
n—1" n-1
Then it is enough to consider the rank of S, for that of X,,. First by
multiplying (n—1)/ \/E for the kth row and then 1/ n\/ﬁ: for the kth column of
S, and denoting

’
p = (yn/n,nyfn,-, \/ng/n),
n—mn AYALIUT e Lo ANy

. n n 1---0 n n
Sn:‘ e :[ con — cee =IK_pp’7
Jng  n—ng| 01 Jrng  ng

n n n n
where I, is the KX K identity matrix. We note that the rank of §, is the

we obtain that

same as that of S, . Therefore it is enough to obtain the rank of §, for that of
Xon-
For this, we note that I, —pp' is idempotent since
(Ix—pp )T —pp')=Ix—pp'.
Since the rank of I, —pp’ is

K
k=1
we obtain the result.
Lemma 2. Under H,:F, =. =Fg=F, for each j, j=1,.,d, 4,; converges in

probability to A;, where

A ; [ st
i F(ajﬂ)—F(aj) r) ¢lu)du.

Proof. This result follows easily by noting that all the components in the
expression of A,; are the empirical probability and the score function ¢ is
square-integrable.

In passing, we also note that under H,:F,=.=Fy,=F, C, =
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d _ d
Y. A2n.;/n—A% converges in probability to C,= ZlAf (Flajy )~ Fla;))
i=

i=1
1 2

- [ f ¢(u)du] by the same reason for Lemma 2. Then for any version of the
0

generalized inverse X,, of X,,, we may propose the following test statistic for
testing Hy: Fy = ... = Fy,

On)

M =

n

(TM—EO(Tm)jI [Tln_EO(Tln)J

TKn—EO(TKn) TKn_EO(TKn)

Then we may reject H, for large values of M,. For any given significance
level o, in order to obtain the critical value C,(a), we need the null distribution
of M,. One may obtain the null distribution for M, by applying the permutation
principle for any reasonable sample sizes. For the large sample case, we consider
obtaining the asymptotic distribution by applying the large sample approximation.

For this purpose, we assume that for each &, k=1,..., K,

limn,/n= X, for some \.€(0,1). (3.1)

n—oo

Then we obtain the asymptotic distribution with the assumption (3.1).

Theorem. With the assumption (3.1), under H,, the distribution of M, converges

in distribution to a chi-square distribution with A—1 degrees of freedom.

Proof. From Puri and Sen (1985), for each k, we see that (1/vn AT, — Eo(T},))
converges in distribution to a normal random variable with mean 0 and variance
A (1—X,)C, with Lemma 2 and assumption (3.1) by applying Slutsky’s theorem.
Therefore from the Cramer-Wold device (cf. Billingsley, 1985) and again using
Slutsky’s theorem, we obtain that
1
Vn

converges in distribution to a KA-variate normal random vector with 0 mean

(Tln - EO(TIH.)"“’ TKn - EO(TKn))

vector and covariance matrix X;, where

,A] (1 - )\1)..- - )\1)\]{
20 - 00,

-AIAK')\K(I_)\K)
whose rank is also K—1. We note that for each n, X, is symmetric and has

K—1 as its rank. Therefore from the Spectral Decomposition Theorem (cf. Mardia
et al, 1979), X, can be written as
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EUTL = FnQnFn,’

where 2, is a (K—1)x(K—1) diagonal matrix of non-zero eigenvalues of X,

and I, is a KX(K—1) orthogonal matrix whose columns are standardized

eigenvectors. Then I',02,'I’/ is a version of the generalized inverse of X,,
which in turn means that the random vector

(Ty, = By(Tin)o, Toen = By (T N1, 2, 12
converges in distribution to a normal random vector with 0 mean vector and
covariance matrix Jx_,, where Ix_, is the (K—1)x (K —1) identity matrix.

Tln_EO(Tln) Tln—EU(ﬂn)
Fn'Qr_zlrn

TKn_EO(TKn) TKn_E()(TKn)

converges in distribution to a chi-square random variable with K—1 degrees of

Therefore

freedom. Now we note that for each n, (T}, — Ey(Ty,), s Tin — By (Tx,)) lies in

the space which is spanned by X, since

Tln _EO(Tln)
(17.-.71) ot :0,
TKn _EO(TKn)

where (1,..,1) consists of the null space of X, This means that M, is
G-inverse invariant for each n. Thus we obtain the result.

3. An Example

In order to illustrate our procedure, we consider the blood lead data, which were
analyzed by Hasselblad et al. (1980) under the log-normal assumption. The data
consist of year, ethnic group, age and lead level from 1970 to 1976. The blood
lead levels were recorded with some interval. In this study, suppose that we are
interested in detecting any difference among the three ethnic groups, white, black
and Puerto Rican. For this purpose, we only consider only the data of 1970. In the
following table, we summarized the frequencies between the blood lead levels and
ethnic groups.

We chose the Wilcoxon score, ¢{u)=u and obtained the following statistics
which are necessary for the analysis of our procedure:

Ty, =1184.39, T, =1178.63, T;, =180.34
E\(T,,)=1223.84, Ey{(T,,)=1223.84, E(Ty,)=177.66
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n =

15.37 —13.30 —2.0
Yo =|—13.30 15.24 -—1.93
—2.07 —1.93 4.00

<Table 1> Frequencies between the blood levels and ethnic groups

lead

evel | 0-14 [15-24|25-34[35-44|45-54|55-64| 65+ | total

races

Blacks 317 2245 3424 { 1870 651 | 220 1251 8852
Puerto
) 559 3148 | 2996 | 1074 | 306 109 65 | 8259
Rican
Whites 111 | 522 424 | 157 4] 16 14| 1285
total 087 | 5915 | 6844 | 3101 998 | 345 206 {18396

and a generalized inverse X, of X, is as follows:

0.04 0.01 ~—0.06

Zon =( 0.01 0.05 —0.06 J

—0.06 —0.06 0.11

Then we obtain that
M, =103.00,

which shows the strongly significant difference among the ethnic groups. Also if
we consider the Pearson’s chi-square test, then we obtain 84854 for the
chi-square statistic, whose p-value is less than 0.0001. Thus one may draw the

same conclusion with our test. All the calculations were carried out using the
IML/SAS on PC.

4. Some Concluding Remarks

When the number of observations in each sub-interval is at most one, this
corresponds to the no tied-value case. Then it is well-known that for the two
sample case, the Wilcoxon rank sum test is locally most powerful for detecting
the location shift when the underlying distribution is logistic. Therefore one may
choose a suitable score function ¢ for the consideration of power of the proposed
test. Also for A = 3, the Kruskal-Wallis test is widely used as a nonparametric
procedure. Since M, is G-inverse invariant, one may show that the two statistics
are equivalent in case of no tied-value. Therefore our procedure can be considered
as a generalization of the Kruskal-Wallis test in the aspects to enhance power of
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test as well as to be applied to the grouped data.

We applied the Pearson’s chi-square test as a nonparametric procedure to the
example in order to test H,:ZF = F,=F, and used the table of chi-square
distribution with 12 degrees of freedom. Therefore the asymptotic distribution of
statistic depends on the number of the sub-intervals as well as the number of
samples. However we note that the asymptotic distribution of our test statistic is
completely independent of the number of sub-intervals. This may be an advantage
of our procedure. As another nonparametric test procedure for the multi-sample
problem, Brookmeyer and Crowley (1982) proposed a median test for the right
censored data and showed that the median test is most powerful when the
underlying distribution is double exponential for the two sample case. Also we

may obtain a median test by letting ¢{u ](u < F 51/2)), where 51/2 iIs a
median of F, defined by &,,=inf {t: F,(t) > 1/2}.

5. Appendix

In this appendix, we derive the expression of Cov,(T},,T,), the covariance
between the two components, 7, and 7. For this, we use the permutational

arguments. Since

ny ng

ﬂn E EAHJZAIJ ZAHJZZM]

i=1j=1 j=1 i=
we have that for any k== [,

0 (Z AIIJEZMJ)( E Anq E Z[h(/)

ngoon;d n, oy

E Z ZAW Zk:/Zlh] + Z E EEA Aan Z]\IJZIIIJ)

i=lh=1j=1 i=1h=1

_nkn,{EA,IJ - }-}-nkn, ZﬁA A, g e }

M on n—1

n d ’I’l. — d 0 n-j 2
=nA.nlm EA EAHJ B +nkn[ An - EA;U T
ji=1

Therefore
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CO’UO (Tkn’ T}n)

j=1 i=1

d ny d oy d n,
223 Anghglzlhg)_ EO( E Anj zllzkij)E()( 2 Ang Z Zlhg)

g=1 i=1 i= g=1 h=1

__ W : 2 i o
__——[ZAan—ATI,

n—1 =1
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