References
- Croux, C., and Ruiz-Gazen, A. (1996). A fast algorithm for robust principal components based on projection pursuit. COMPSTAT Proceedings in Computational Statistics. Physica-Verlag, Heidelberg. 211-216
- Croux, C., and Ruiz-Gazen, A. (2005). High breakdown estimators for principal components: The projection-pursuit approach revisited. Journal of Multivariate Analysis, Vol. 95, 206-266 https://doi.org/10.1016/j.jmva.2004.08.002
- Hubert, M., Rousseeuw, P.J., and Verboven, S. (2002). A fast method for robust principal components with applications to chemometrics. Chemometrics and Intelligent Laboratory Systems, Vol. 60, 101-111 https://doi.org/10.1016/S0169-7439(01)00188-5
- Huh, M.H. (1999). Quantification Methods for Multivariate Data. Freedom Academy, Seoul. (Written in Korean)
- Johnson, R.A. and Wichern, D.W. (1992) Applied Multivariate Statistical Analysis (Third Edition). Prentice Hall, Englewood Cliffs
- Lebart, L., Morineau, A., and Warwick, K. (1984). Multivariate Descriptive Statistical Analysis. Wiley, New York
- Li, G. and Chen, Z. (1985). Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. Journal of the American Statistical Association, Vol. 80, 759-766 https://doi.org/10.2307/2288497
- Rousseeuw, P.J. (1984). Least median of squares regression. Journal of the American Statistical Association, Vol. 79, 871-880 https://doi.org/10.2307/2288718
- Rousseeuw, P.J. and Leroy, AM. (1987). Robust Regression and Outlier Detection. Wiley, New York