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Graphical Methods for Correlation and Independence
Chong Sun Hong! and Jang Sub Yoon2

Abstract

When the correlation of two random variables is weak, the value of one variable
can not be used effectively to predict the other. Even when most of the values are
overlapped, it is difficult to find a linear relationship. In this paper, we propose
two graphical methods of representing the measures of correlation and
independence between two random variables. The first method is used to represent
their degree of correlation, and the other is used to represent their independence.
Both of these methods are based on the cumulative distribution functions defined
in this work.
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1. Introduction

A simple metric for describing bivariate data is to measure the degree of
correlation between two random variables, X and Y. This can be done graphically
using scatter plots, or analytically using various formulas. The most common and
well-known statistic is Pearson’s correlation coefficient. This measures the degree
to which X and Y are linearly related. The correlation coefficient could play a
role as a measure of the degree to which X (Y) can be used to predict ¥ (X).
This works for all cases where the relationship between them is monotonic.

We consider some cases of weak correlation coefficients. The weak correlation
means that its correlation coefficient has a value which is close to zero. A weak
correlation coefficient might turn out to be significant with large sample size.
When sample size is 400, the 5% two-tailed significant value of the correlation
coefficient is 0.098. (see Snedecor and Cochran 1989; Myers and Well 1991). Under
the situation of weak correlation coefficient, the value of one variable cannot be
used effectively to predict the other. While it may be impossible to make
individual predictions, it may still be possible to characterize aggregate behavior.
This is done by linking the distribution of X and Y. In particular, we are
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interested in the case where knowing X would allow us to obtain the distribution
of Y, but this is insufficient to make precise predictions regarding the exact value
of Y, because the distributions for different values of X have a large amount of
overlap.

Some examples are generated by using bivariate normal density function with
weak correlation coefficients with sample size n=10,000. The data shown in
<Figure 11> are latticed with a small interval (for example, 0.2). The scatter
plots in <Figure 1.1> show that most values are overlapped and that linear or
monotonic relationships cannot be found between the two variables. Hence, no
meaningful relation can be derived from scatter plots and correlation coefficients
under weakly correlated situations.

p=+0.1 p=+03

X %

<Figure 1.1> Data with weak correlation coefficients

In this paper, we propose two graphical methods of representing the measures
of correlation and/or independence between two random variables. The first
method represents the degree of correlation by using the cumulative distribution
function. This correlation graph is explained along with its properties in Section 2.
The other method, which is described in Section 3, uses the independence theorem
explained with the cumulative distribution function. This graphical method can be
used to determine the independence of two random variables, so that the
independence of two variables can be evaluated. In Section 4, two illustrated
examples are given. The results of the two graphical methods are demonstrated in
Section 5, in the case of two random variables which are not independent and
whose correlation coefficients are close to zero. In Section 6, we derive the

properties of the proposed methods and present our conclusions.

2. Correlation Graph

When a cumulative distribution function (CDF) of two random variables X and
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Y, Fyy(z,y), is drawn on a two dimensional plane, it is not easy to understand

what this three dimensional CDF might tell us regarding their degree of

correlation. Hence, we might consider the following distribution function which
turns out to be the two dimensional CDF :

PX<z, Y<y,)=Fxy(z,y.), 2.1

where y, is the predicted values of the random variable, Y, at X =z obtained

from the estimated regression line, i.e. y, = y+ Bz —z). The CDF in (2.1) can be
defined only when the estimated regression coefficient is non-negative. In the case
where the estimated regression coefficient is negative, the following probability,
which can be interpreted with CDFs, is considered :
P(X>x, Y<y,)=Fyly,)— Fyy(z,y,) (2.2)
= F; Y(:c v Yu ).
These two probabilities are obtained for all 4, as shown in <Figure 2.1>. As g
increases, Fyy(z,y,) in (21) increases from 0 to 1 for non-negative (3, and

PN

Fyy(z,y,) in (2.2) decreases from 1 to O for negative 3.
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<Figure 2.1> Non-negative and negative correlation

Two probabilities, Fyy(z,y,) and Fxy(z,y,), are demonstrated in <Figure 2.2>

for some generated data following bivariate standard normal densities with various
values of the correlation coefficients, p. This graphical method is referred to as
"Correlation Graph.”

From <Figure 2.2.A and B>, we can obtain the following results. The first is

that Fyy(z,y,) is symmetric with Fy,(zr,y,) when the absolute values of the
correlation coefficient are equivalent. Secondly, Fy,(z,y,) increases rapidly as p
goes from 0 to +1 (for non-negative ), whereas Fyy(x,y,) decreases rapidly as

p decreases from 0 to -1 (for negative f).
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<Figure 2.2.A> Correlation Graphs

These phenomena are also symmetric with respect to the absolute values of p.
When the non-negative correlation coefficient becomes stronger, Fyy(z,v,)

reaches its upper limit (value 1) more quickly. On the other hand, when the
negative correlation coefficient becomes stronger, F;{y(a;,y,;) decreases more
rapidly from its upper limit. When p is close to 0, the third result is obtained:
both Fyylz,y,) and Fyy(z,y,) do not reach their upper limit. In other words,

when p is non-negative and weak, Fy,(z,y,) increases slowly and does not



attain the value of 1 as
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x increases, while when p is negative and weak,

Fyy(z,y,) has a value of less than 1 for negative values of z and decreases

slowly to 0 as z increases.
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<Figure 2.2.B> Correlation Graphs

Therefore, both of Fyy(z,y,) and Fy,{(z,y,) in (21) and (2.2), respectively,

might be used as measures of the degree of correlation between two random

variables.

If the Pearson correlation coefficient were also

included with the
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correlation graphs based on Fyy(z,y,) and Fyy(z,y,), one could understand the

structure of bivariate data with greater ease.

3. Independence Graph

In the previous section, we found that with the shapes of the correlation graph
based on Fyy(z,y,) and Fyy(z,y,), the degree of correlation between two

variables could be explained. Nonetheless, when p is weak, it is not easy to
predict the correlation coefficients, as shown in <Figure 2.2>, since they do not
reach their upper limit.

Now, we derive the following Lemma 1 from the well-known independence
theorem:

Lemma 1. Two random variables X and Y are defined to be stochastically
independent, if and only if Fyy(z,y)= Fy(z)Fy(y) for all z and y. Hence, if two
random variables are independent, Fyy(z,2)= Fy(z)Fy(z) is satisfied for all
X=z and Y==x.

In particular, when the estimate of the correlation coefficient approaches zero, y,
could be replaced by y, =y+(z—z) at Fyylz,y,) in equation (2.1), ie. B is
replaced by an arbitrary value ‘1’ at y, = y+B(z—z) irrespective of whether p
(or B) is non-negative or negative. Then, we calculate and draw Fy y(x,y:) for
all x, and compare Fy,(z,y.) with the product of Fy(z) and Fy(y,) in order to
evaluate the independence of the two random variables. Based on Lemma 1, if
Fyylz,y.) and Fy(z)Fy(y,) are overlapped for most z, we might say that the
random variables X and Y are stochastically independent.

For the data used in <Figure 22>, we obtain Fyy(z,v.), Fx(z), and Fy(y,)
for all z, where y,=zx—z+y, and draw the product, Fy(z)Fy(y,), and
FXy(z,y;) on the same plot. These results are summarized in <Figure 3.1>,
where Fy(z)Fy(y,) and Fy,(z,y,) are represented by continuous and dotted

lines, respectively. This method is referred to as "Independence Graph.”
From <Figure 3.1.A and B>, we found that when the values of p are close to

zero, both of Fyy(z,y,) and Fy(z)Fy(y,) are greatly overlapped for most of z.
Moreover, when p is positive Fy(z)Fy(y.) is less than or equal to Fy,(z,y,),

and when p has a negative value Fyy(z.y.) is less than or equal to
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Fy(z) Fy(y,) for all z.
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<Figure 3.1.A> Independence Graphs

Therefore by comparing Fyy(z,y.) and Fy(z)Fy(y.) for all z and
y, = z—ax+y, we are able to determine the degree of independence of the two

random variables. Hence, it can be concluded that if the Pearson correlation
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coefficient were to be used in conjunction with the independence graph as well as
the correlation graph, it would be easy to comprehend the structure of bivariate

data.
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<Figure 3.1.B> Independence Graphs

Two examples are illustrated in this section. The first data with large

4. Some Illustrated Examples

sample
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size N=4,486 is on Household Consumptions from January lst 2000 to December
31th 2000 which was surveyed by Department of Social Statistics, Korean National
Statistical Office during 2000. Korean National Statistical Office has made a
survey of korean household consumptions on the whole nation throughout the
country every five years in order to comprehend the structure of the korean
standard of living and income - expenditures via the depth surveys on household
assets including annual income, consumption expenditure, savings and liabilities,
etc. Among a lot of variables in the data, we choose two variables: the clothing
and communication expenses. And the correlation between the clothing expenses
(X) and the communication expenses (Y) is of interest.

Scatter Plot Folz,y,) Fo{z,y)) & Fylz)F, ()
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<Figure 4.1> Distributions for clothing and communication expenses

A scatter plot showing the clothing and communication expenses is shown in
the left-hand plot of <Figure 4.1>. Quite obviously, there exists weak linear
relationship between these two variables. The Pearson correlation coefficient is
found to have a positive and low value, p=0.2167. The bivariate values are
standardized to compare with the correlation and independence graphs in <Figure
2.2> and <Figure 3.1>. (Hereafter, the random variables X and Y are regarded as

being standardized ones.) Then, we calculates Fyy(z,y,) and both Fyy(z,y.)

and Fylz)Fy(y.), where y,=0.2167¢ and vy, = z. These probabilities are
represented in <Figure 4.1>. From the center plot in <Figure 4.1>, we find that
Fyy(z,y,) is increasing and does not reach its upper limit. Also, from the
right-hand plot, it is found that Fyy(z,v.) and Fy(z)Fy(y,) are very close, and

Fy(z)Fy(y,) (real line) is slightly less than Fyy(z,y,) (dotted line). Hence, it
might be concluded that the correlation coefficient of this data is expected to be
positive and weak and two random variables are independent based on the
correlation and independence graphs in <Figure 4.1>, even though its correlation
coefficient is significant with large sample size.
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Another set of data is taken from an introductory textbook of Spirer (1975). The
producers of yak’s milk purchase yak’s milk in the market each day at a price
determined by a variety of economic factors. These producers take a sample from
their records of 11 days’ values for the quantity (X) and cost per metric ton (Y)
of milk purchased. <Figure 4.2> shows the 11 days’ values. One would expect the
price to be paid, as soon as the amount to be purchased on the next day is
determined. This data set is quite small (VN =11), and has a strong relationship

([)= -0.9402). All of the values are also standardized in order to compare them
with the data in <Figure 2.2> and <Figure 3.1>. Then, we calculate Fy,(z,y,)
in (22) and both Fy,(z,y.) and Fy(z)Fy(y,), where y, =—0.9402z and y, = .
Then these probabilities are represented in <Figure 4.2>. From the center plot in
<Figure 4.2>, it can be seen that Fy,(z,y,) decreases rapidly from its upper
limit. From the right-hand plot in <Figure 42>, we find that Fy,(z,y,) and
Fy(z) Fy(y.) are not overlapped, and Fy(z)Fy(y,) is greater than Fy y(z,vy,) for

most z. Hence, we might conclude that the correlation coefficient of this data is
strongly negative, and the two random variables are not independent.
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<Figure 4.2> Distributions for yak’s milk (price vs. quantity)

5. Other Uncorrelated Data

We consider some uncorrelated bivariate data, in which there exist more than a
linear relationship between two variables, such as the elliptical and quadratic
relationships found in the scatter plots in <Figures 5.1 and 52>. Two sets of data
are generated with the sample size N=2,000, and the probabilities Fyy(z,¥,),

Fyy(z,y.) and Fy(z)Fy(y.) are then obtained, where y, =z and y, = z, and

where (= p=0.0008 and B= p=0.0014 for the first and second set of data,
respectively. The correlation and independence graphs are shown in <Figures 5.1
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and 5.2>.
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<Figure 5.1> Elliptical shaped data
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<Figure 5.2> Quadratic shaped data

From the center plots in <Figures 5.1 and 52>, both Fy,(z,y,)’s are found to

increase very slowly and do not reach their upper limit, so that we might
conclude that the correlation coefficients of the two random variables in both set
of data are non-negative and weak.

Also from the right-hand plots in <Figure 5.1>, it can be seen that FXy(m,y:)
and Fy(z)Fy(y.) are nearly overlapped for most z. Hence one might be conclude
that its correlation coefficient is expected to be positive and weak and two random

variables are independent based on the correlation and independence graphs in
<Figure 5.1>.

Nonetheless, it can be seen that Fyy(z,y,) and Fy(z)Fy(y.) are not
overlapped from the right-hand plots in <Figure 5.2>. In particular, Fy(z)Fy(y.)
(real line) is greater than Fy,(z,y.) (dotted line) for negative z, but Fy(z)

Fy(y.) is less than.Fy,(z,y,) for positive z. Hence, from <Figure 52> we can

conclude that there exists a (not linear) relationship between two random
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variables, even though their correlation coefficient is close to zero.
Therefore, if the Pearson correlation coefficient were to be included with the

correlation graph based on Fyy(z,y,) and Fy,(z,y,) as well as the
independence graph based on Fyy(z,y.) and Fy(z)Fy,(y.), we could determine

whether two random variables in bivariate data sets are correlated or linearly
independent.

6. Conclusion

In this paper, we consider two probabilities for the correlation between two
random variables : Fyy(z,y,)=P(X <z, Y<y,) for a non-negative correlation,
and Fyy(z,y,)=Fy(y,)— Fyy(z,y,) for a negative correlation, where y, is a
predicted value obtained from the estimated regression line at X=gz, ie.
y, =y+pBlc—7z). The correlation graph based on Fy,(z,y,) and Fyvlz,y,)
plays an important role in evaluating the degree of correlation between two
random variables.

Using Fyy(z,y,) and Fyy(z,y,), the correlation coefficient can be evaluated
with ease. However, when the correlation coefficient is weak, Fyy(z,y,) and
Fyylz,y,) do not attain a value of 1. Based on the fact that Fy,(z,z)=
Fy(z)Fy(z) for all X=z and Y=z, we compare Fy,(z,y,) with Fy(z)Fy(y.),
where y, =y+(z—z). If both Fyylz,y,) and Fylz)Fy(y,) are greatly

overlapped for most z, then we could say that the correlation coefficient is close
to 0.

Moreover, when the correlation coefficient has a positive value, Fy(z)Fy(y.) is
less than Fyy(z,v.), and when the correlation coefficient is negative, Fy,(z,y.)
is less than Fy(z)Fy(y.) for all z. Hence, the independence graph based on both

Fyylz,y,) and Fy(z)Fy(y.) can be used as a method to explore the

independence of two random variables.
For some uncorrelated bivariate data, in which there exists more than linear

relationship between two variables, we could find that Fyy(z,y,) or Fyy(z,y,)
does not attain the value of 1, and Fyy(z,y,) may not be overlapped with
Fy(z) Fy(y,) for most z. In some cases, it can be happened that Fy,(z,y.) is

crossed over Fy(z)Fy(y.).

Both the correlation graph and the independence graph proposed in this paper
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are generally constructed with raw values of the data. In other words, for drawing
Fyylz,y,), Fyylz,y,) and Fy(z)Fy(y.), the values of y, and y, are obtained
from raw values of the data, where y, =y+fz—z) and y,=y+(z—z). And

these graphs are also constructed with standardized values. In particular, in order
to compare to the correlation and independence graphs in <Figure 2.2 and 3.1>,
the raw data are standardized for drawing these graphs as we did in Section 4

and 5. Then z, y, =y+B&—7z) and y, = y+ (z—z) might be replaced as (z,),

(2,), = plz,) and (z,), = (z,), respectively, where (z,) and (z,) are standardized
values of z and y, respectively, and f) i1s not only the estimated correlation
coefficient of = and y but also the estimated regression coefficient of (z,) and
(zy). Hence the correlation graph and the independence graph constructed with
standardized values (z,) and (z,) can evaluate the degree of the correlation and
independence more precisely by comparing with those in <Figure 2.2 and 3.1>.
Therefore, the two graphical methods proposed in this paper can be helpful to
understand the structure of bivariate data if the Pearson correlation coefficient and

scatter plots are used simultaneously.
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