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EXAMPLES OF SMASH PRODUCT

Sei-Qwon Oh* and Eun-Hee Cho**

Abstract. Several examples of smash product are given.

The aim of this short note is to see that the skew group ring, skew
polynomial ring and skew enveloping algebra are explained by smash
product. Throughout the note, k will be a field of arbitrary characteristic
and all vector spaces will be over the field k.

Let H = (H, m, µ,∆, ε) be a bialgebra and let A be an H-module
algebra. That is, A is a left H-module with module structure H×A −→
A, (x, a) 7→ x · a, satisfying

x · (ab) =
∑

(x′ · a)(x′′ · b), x · 1 = ε(x)1,

where ∆(x) =
∑

x′ ⊗ x′′. Here we write out and prove the following
well-known theorem for completion.

Theorem

Let H be a bialgebra and let A be an H-module algebra. Then
there exists a unique algebra structure on the vector space A⊗H, with
multiplicative identity 1⊗ 1, such that its product is given by

(a⊗ x)(b⊗ y) =
∑

a(x′ · b)⊗ x′′y.

This algebra is called a smash product of A and H and denoted by A]H.

Proof. We use Sweedler’s notation in [3] to prove the associativity of
the product. Note that

(1⊗∆)∆(x) =
∑

x′ ⊗ x′′ ⊗ x′′′ = (∆⊗ 1)∆(x)

for all x ∈ H.
For a, b, c ∈ A and x, y, z ∈ H,

((a⊗ x)(b⊗ y))(c⊗ z) =
∑

((a(x′ · b))⊗ (x′′y))(c⊗ z)
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=
∑

(a(x′ · b)((x′′y)′ · c))⊗ ((x′′y)′′z)

=
∑

(a(x′ · b)(x′′ · (y′ · c)))⊗ (x′′′y′′z)

=
∑

(a(x′ · (b(y′ · c))))⊗ (x′′y′′z)

= (a⊗ x)(
∑

(b(y′ · c))⊗ (y′′z))

= (a⊗ x)((b⊗ y)(c⊗ z)).

Hence the product satisfies the associativity. For a ∈ A and x ∈ H,
since ∆(1) = 1⊗ 1 and

∑
ε(x′)x′′ = x, we have

(a⊗ x)(1⊗ 1) =
∑

(a(x′ · 1))⊗ x′′

=
∑

(aε(x′)1)⊗ x′′

= a⊗ (
∑

ε(x′)x′′)
= a⊗ x

= (1⊗ 1)(a⊗ x),

thus 1⊗ 1 is unity. It completes the proof.
Clearly the linear maps

i : A −→ A]H, i(a) = a⊗ 1,

j : H −→ A]H, j(x) = 1⊗ x

are monomorphisms and thus it makes sense that, for a ∈ A and x ∈ H,
both elements a⊗1 and 1⊗x in A]H are denoted by a and x. Henceforce
we omit the notation ⊗ in A]H and each element a⊗x ∈ A]H is denoted
by ax. That is, the smash product A]H is an algebra generated by A
and H subject to the relation xa =

∑
(x′ ·a)x′′ for all a ∈ A and x ∈ H.

1. Skew group ring. Let G be a group. The group algebra k[G] is a
bialgebra with

∆(x) = x⊗ x, ε(x) = 1

for all x ∈ G. Let A be a k-algebra such that there exists a group
homomorphism φ : G −→ Aut(A), where Aut(A) is the algebra of all
automorphisms on A. Then A is a k[G]-module algebra with module
structure x · a = φ(x)(a) for a ∈ A, x ∈ G and thus there exists the
k-algebra A]k[G]. Every element of A]k[G] is of the form

∑
x∈G axx,

ax ∈ A and xa = (x · a)x for a ∈ A, x ∈ G. Thus A]k[G] is the skew
group ring of A and G. This approach should be compared with [2,
1.5.4].
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2. Semi-direct product. Let G and H be groups such that there
exists a group homomorphism θ : H −→ Aut(G). Then the group
algebra k[H] is a bialgebra with

∆(x) = x⊗ x, ε(x) = 1

for all x ∈ H and the group algebra k[G] is a k[H]-module algebra with
module structure x · g = θ(x)(g) for all x ∈ H and g ∈ G. It follows
that there exists k[G]]k[H]. All elements of the form gh, g ∈ G,h ∈ H,
are unit and the set {gh | g ∈ G,h ∈ H} forms a group under the
multiplication on k[G]]k[H], called the semi-direct product of G and H
and denoted by G×θ H. Note that k[G]]k[H] is isomorphic to the group
algebra k[G×θ H].
3. Skew polynomial ring A[x; δ]. The polynomial ring k[x] is a
bialgebra with

∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0.

Let A be a k-algebra with a derivation δ. Then A is a k[x]-module
algebra with module structure

x · a = δ(a), a ∈ A.

Hence there exists the algebra A]k[x]. Every element of A]k[x] is of the
form

∑
i aix

i, ai ∈ A and xa = ax + δ(a) for all a ∈ A and thus A]k[x]
is the skew polynomial ring A[x; δ]. This approach should be compared
with [2, 1.2.3].
4. Skew polynomial ring A[x; α, δ]. Given a k-algebra A, let α be an
endomorphism in A and let δ be an α-derivation. That is, δ is a k-linear
map from A into itself such that δ(ab) = α(a)δ(b)+δ(a)b for all a, b ∈ A.
The polynomial ring k[α][x] is a bialgebra with

∆(α) = α⊗ α ∆(x) = α⊗ x + x⊗ 1

ε(α) = 1 ε(x) = 0

The k-algebra A is a k[α][x]-module algebra with module structure

α · a = α(a), x · a = δ(a)

for a ∈ A. Therefore there exists the k-algebra A]k[α][x]. Let S be the
subalgebra of A]k[α][x] generated by x and all elements of A. Then all
elements of S are of the form

∑
i aix

i, ai ∈ A and we have the relation
xa = α(a)x + δ(a) for all a ∈ A. Hence S is just the skew polynomial
ring A[x; α, δ]. This approach is more convenient than that given in [1,
1.10] because it is messy to prove the fact that the skew polynomial ring
A[x; α, δ] satisfies the associative law.
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5. Skew enveloping algebra. Let A be a k-algebra and let g be a
k-Lie algebra such that there is a Lie homomorphism φ : g −→ Derk(A),
where Derk(A) is the set of all k-derivations in A. Denote the universal
enveloping algebra of g by U(g). Then A is a U(g)-module algebra with
module structure x · a = φ(x)(a) for x ∈ g and a ∈ A since U(g) is a
bialgebra such that the comultiplication ∆ and the counit ε are given
by

∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0
for all x ∈ g. Hence there exists the k-algebra A]U(g) satisfying the
relation xa = x · a + ax for all a ∈ A and x ∈ g. The smash product
A]U(g) is just the skew enveloping algebra of A and g. (See [2, 1.7.10])
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