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THE ORDER AND SPEED OF CONVERGENCE FOR
THE k-FOLD PSEUDO-OLVER’S METHOD LOCATING
A SIMPLE REAL ZERO!

Young Ik Kim*

ABSTRACT. A convergence behavior is under investigation near a
simple real zero for the k-fold pseudo-Olver’s method defined by
extending the classical Olver’s method. The order of convergence is
shown to be at least k+ 3. The asymptotic error constant is explic-
itly given in terms of k and the corresponding simple zero. Vari-
ous numerical examples with a proposed zero-finding algorithm are
successfully confirmed with the use of symbolic and computational
ability of Mathematica.

1.. Introduction and preliminaries

Consider a function f: R — R which has a simple real zero a and is
sufficiently smooth in a neighborhood of . The aim of this analysis is
to find « accurately and to establish the order and speed of convergence
by constructing and analyzing an iterative method

Tn+1 :g(xn)a n:()a 17 27 3 (11)

where g : R — R has a real fixed point « and xg is given. Suppose further
that g is sufficiently smooth in a neighborhood of a. Given p € N, we
assume

Lo@)| =g (@)l <1, ifp=1

: z=a (1.2)
gD (a)=0for 1 <i<p—1and ¢g®(a)#0, if p>2.
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Let x,, belong to a sufficiently small neighborhood of a for n € NU {0}.
Then Taylor series[1,6] expansion about « immediately gives

Znp1 = g(n) = g() + 9P (€) (2 — )P /pl, (1.3)

where ¢ € (a,b) with a = min(a, x,,) and b = max(a, x,,). The continu-
ity of g at a ensures, for all given € > 0, the existence of a number § > 0
satisfying
T, — )Pt

frns1 =l = lglan) ~g(a)| = 1g”©) 2= o, —af <, (10
whenever |z,—a| < 0. Let J = {z : |[x—a| < §}. Owing to the continuity
of gP) on J, there exists a number M > 0 satisfying |¢®)(z)| < M for
all x € J. We now choose

5= min(e, 1/M), if p=1.
| {min(eP1, p!/M)}l/(pfl), if p>2.

Then |z,4+1 — | = |g(xn) — g(a)| < |zn — @|. Hence g : J — J. Since
|zn, — a] <6, it follows from (1.4) that

01— al = [g(zn) — g(@)| < Klzn —al, (1.5)

where 0 < K = sup{M |(z,—a)[P~1/p! : n € NU{0}} < M §*~1/p! <1
for p > 2. If p=1, then K = M < 1 can be chosen according to (1.2).
Hence g is contractive on J for any p € N and the sequence {z,}72,
with zo € J defined by (1.1) converges to a fixed point o € J[7]. Now
introducing e, = =z, — a with the fact that lim,_.. & = «, for the
iterative method (1.1) we obtain the asymptotic error constant (also
called the speed of convergence) n and order of convergence p[3,7] as
follows:

L = g (a)| / . (1.6)

= lim
n or

Now for an arbitrarily given x € R, we define a function F : R — R by
W) 1)
fi@) 2 f(a)?
with f/(x) # 0. Let wo(z) = F(x), and let for k € N
flwp-1(2)) 1 f(wp—1(2))f"(x)
f'(x) 2 f(@)?
(1.8)

Hence wy(z) = F¥(wo) = FFT1(x) for k € N, where F¥(wg) = F(F(--- F(wo)--+)).
As a result of the preceding analysis, we have constructed an iterative

Flw) = (1.7)

wi(z) = F(wg-1(z)) = wg—1(z) —
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method with zg € R
Tnt1 = F(2) = g(n) (1.9)

which is called the k-fold pseudo-Olver’s method. If k = 0, the method
becomes the classical Olver’s method[2] and has the cubic convergence as
shown from Halley’s method and other methods of Laguerre’s type[4,5].
If K =1, it is simply called the pseudo-Olver’s method.

2.. Convergence of the k-fold pseudo-Olver’s method

In view of the fact that f/(a) # 0 and from (1.8), one can easily show
that

wi(a) = a, for all k € NU {0}, (2.1)
d

wo' () = @wo(x) T 0, wo” () = 0, wp"” () = 3¢ — () f (),
(2.2)
with ¢ = f"(a)/f'(«). We further wish to establish the following lemma.
LEMMA 2.1. Let w,gm)(a) = J‘i—mmwk(x)\xza for any k,m € N U {0}.

Then the following holds.

a, if m=0.

w;gm)(a) =¢0,if1<m<k+1.
a2l k() with ¢ = f"(0)/f'(), if m=k+2.
(2.3)

Proof. If k = 0, then the assertion holds from (2.1) and (2.2). It suffices
to consider k € N. If m = 0, then the assertion immediately holds from
(2.1). The remaining proof will be given based on induction on m > 1.
We rewrite (1.8) for k& € N with the abbreviation wg_q for wi_1(z) to
obtain

2f'(2)* - (wp —wy—1) = = fwp—1) - (2F(2)* + flwp—1) f'(x)). (24)
Differentiating both sides of (2.4) with respect to x and evaluating at
T = « yields

3f'(2)? - f"(@)(wp — w1l + f'(@)* - (wp — wp—1)a
= —f'(wg—1) - w1~ f'(2)]a (2.5)
Hence we get 2f/(a)?- (wk’(a) —wk,l’(a)> = —2f"(a)? - wi_1' (), which

states
wy'(a) = 0 for all k& € N. (2.6)
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Suppose now (2.3) holds for m > 1. By differentiating (m + 1) times
both sides of (2.4) with respect to x via Leibnitz Rule[6] and evaluating
at £ = a we obtain

m~+1

2 Z m—l—lcr : (f/S)(m+1_T) : |:w](q;r) (IE) - w,(Ql(a:)}
r=0

=

m—+1

== mp1Cr [f(wkfl)] e, [Qf'Q + f(wg—1) - f”] " ) (2.7)
r=0
where ,,,C, = #11)1747 /= f'(x) and f” = f"(z). Since w,(:)(a) —

w,(Ql(oz) =0for 0 <r <m—1 < k, the leftmost side of (2.7) has
possible nonvanishing terms for » = m and r = m + 1 as follows.

2[(m4+1) (£ (@) (™ (@) =™} (@) ) £ (@) (wf™ (@) ="V (@)

= —2(m+1) (Y (@) ™) ()21 (@) (w" D (@) =" V(@) (28)

in view of the induction hypothesis that w,gm)(a) =0for1<m<k+1.
(m+1-r)

Similarly, owing to the fact that [f(wk_l)} e () =0for2 <r<

m+ 1 < k + 1, the rightmost side of (2.7) has possible nonvanishing

terms for r = 0 and » = 1 as follows.

(m+1) (m)
2 )] " (@) (@)~ 4l ) [ Flnn)] (@) () (@),
(2.9)
Hence it follows from the right side of (2.8) and (2.9) that
min), [0, if2<m<k+1.
k (@) = { c(m+1) w,(en_l)l(a), ifm==Fk+2. (2.10)

We also find for m +1 = k + 3 that
w™ (@) = w (@) = c(k+3) w1V (@) = & (k+3)(k+2) w[?, ()

k+3)!

= (k+3)(k+2)(k+1)---4--- " wp(a) = (i))—’])ck-wo”’(a) (2.11)
Hence (2.3) also holds for m + 1, completing the induction proof. [

The result of the preceding analysis immediately leads us to the fol-

lowing theorem.

THEOREM 2.1. Let £ € N U {0} be given and a be a simple real
zero of the smooth function f described in Section 1. Then the k-fold
pseudo-Olver’s method defined by (1.9) is at least of order k 4 3 and its
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asymptotic error constant 7 is given by |c¥ - d|/6, where ¢ = f(a)/f' ()
and d = 3¢ — f"(a/f'(a).

Proof. Let g(x) = wi(x) = FF¥*'(z) as described in (1.8) and (1.9).
Define the iteration z,,+1 = g(z,) with 29 € J and the error e,, = x,, — «
for n € NU{0}. Then Lemma 2.1 yields the asymptotic error constant
n and the order of convergence p in view of (1.6)

1 k Ck'd
09 0)]| = ) =

(k +3)!

. En+1
n = lim

1
A | T e

completing the proof. [

3.. Algorithm, numerical results and discussions

Based on the discussion in Sections 1 and 2, we construct a zero-
finding algorithm with the aid of symbolic and computational ability of
Mathematica[8] as follows.

Cramm 3.2. Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. For k € NU {0}, construct the iteration function g = FF+!
with the given function f having a simple zero «, according to the
description in Section 1.
Step 2. Set the minimum number of precision digits. With exact zero
« or most accurate zero, supply the theoretical asymptotic error
constant 7. Set the error range €, the maximum iteration number
Nmaz and the initial value xg. Compute f(zg) and |zg — « |.
Step 3. Compute zpy1 = g(zy,) for 0 < n < npe, and display the
computed values of n, x,,

f(xn), ’xn - O"v |en+1/enk+3| and R

We illustrate the order of convergence and asymptotic error constant

for a function
3 . T 2
flz)y=2a2"—¢e cos(2)+ln($2+1)+1

having a simple real zero &« = —1. The symbolic computation of f’(z)
and f”(z)in (1.8) has been easily done with the aid of Mathematica. Ta-
ble 1 lists the numerical results for approximated zeros of f(z) computed
with the aid of Mathematica programming. To obtain sufficient accuracy
and keep track of the asymptotic error constant requiring highly accu-
rate arithmetic, the minimum number of precision digits was chosen as
300 by assigning $MinPrecision=300 in Mathematica. The error bound
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e for | 2, —a | < € was chosen as 0.5 x 1072%° for the current experiment.
As can be seen in Table 1, the number of computation gets smaller due
to high-order convergence as k increases. For each 0 < k < 5, the order
of convergence has been confirmed to be of at least k + 2. As a second
numerical example, we take
f)=e 142> —2%) —2’lnz+1
with a simple zero
o = 1.51681722659693391649872275032484854689640801549542761628949020116403015429475432562
1293918926263676073375817561810310805778775998164929807624089391720851322462813460187
508241194796520149664659675927792304679148311701968690090738671227458264485912605,
which is accurate up to 250 significant decimal digits. Table 2 also shows
a good agreement with the theory presented in this paper. The com-
puted asymptotic error constants have shown to be in good agreement
with the theoretical asymptotic error constants 1 up to 10 significant
digits. Even though the computed root was rounded to be accurate up
to the 250 significant digits, the limited space allowed us to list it only
up to 15 significant digits. Although not shown here, other examples for
f(z) = %—x cos(%)—%/§ with a = V2 and f(z) = 23+2* cosmz—§
with @ = 1/2 have shown similar convergence behavior with high accu-
racy.

The high-order convergence established in Theorem 1 has been con-
firmed through many additional numerical experiments. This new de-
velopment will play a role in the highly accurate computation of zeros
for the nonlinear equation. The current study will be extended to the
case when zeros are not simple.
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Convergence of k-fold pseudo-Olver’s Method for
flz)=2%—¢" cos(%) + ln(—IfH) +1
Tn f(@n) | Zn — o | ent1/en™3 T
-1.50000000000000 -2.70273 0.500000 1.957641668
-1.06408632741116 -0.234212 0.0640863 0.5126906193
-1.00040971378055 -0.00140270 0.000409714 1.556626497

-1.00000000013443
-1.00000000000000
-1.00000000000000

1.00000000000000

—4.60044 x 10~10
—1.62756 x 10—2°
—7.20692 x 1088
—6.25731 x 10263

1.34432 x 1010
4.75598 x 1030
2.10597 x 1088
1.82848 x 10—263

1.954611612
1.957641667
1.957641668

-1.50000000000000
-1.03260294780328
-1.00000387276317
-1.00000000000000
-1.00000000000000

-2.70273
-0.115402
-0.0000132532
—3.15109 x 10~21
—1.00703 x 10—83

0.500000
0.0326029
3.87276 x 106
9.20797 x 1022
2.94270 x 1084

0.5216471649
3.427626289
4.093363871
4.093451779

4.093451779

-1.00000000000000 | 1.06319 x 10—320 0
-1.50000000000000 -2.70273 0.500000 8.559455868
-1.01723955086851 -0.0600634 0.0172396 0.5516656278

-1.00000001150590
-1.00000000000000
-1.00000000000000

—3.93748 x 108
—5.90673 x 1039
—4.48738 x 10—193

1.15059 x 1038
1.72604 x 1039
1.31128 x 10—193

7.555983644
8.559455148
8.559455868

B WN O WNRFEOIR WN OO WNEOOR WK F OO R W = O3

-1.00000000000000 | 1.06319 x 10320 0

-1.50000000000000 -2.70273 0.500000 17.897923
-1.00927950711051 -0.0320645 0.00927951 0.593888455
-1.00000000001051 | —3.59672 x 10=11 | 1.05102 x 10~ | 16.46115442
-1.00000000000000 | —8.25579 x 10—65 | 2.41247 x 10=%% | 17.89792300
-1.00000000000000 | 1.06319 x 10320 0

-1.50000000000000 -2.70273 0.500000 37.42476774
-1.00503986366130 -0.0173381 0.00503986 0.6451025486
-1.00000000000000 | —1.00173 x 1014 | 2.92722 x 10~15 | 35.44246738
-1.00000000000000 | —2.35855 x 10—100 | 6.89203 x 10~101 | 37.42476774
-1.00000000000000 | 1.06319 x 10320 0

-1.50000000000000 -2.70273 0.500000 78.25563
-1.00275015721112 -0.00943849 0.00275016 0.7040402460

-1.00000000000000
-1.00000000000000
-1.00000000000000

—8.46554 x 1019
—3.75555 x 10147
1.06319 x 10320

2.47376 x 10~19
1.09743 x 10147
0

75.59576211
78.25563000
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1.51681722659693

—4.46294 x 10~115

1.24386 x 10115

0.6359686949

kln Tn f(zn) | Tn — o | lent1/en® 2 [ n
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0|l 3] 1.51681722659693 | 1.27153 x 10—51 3.54385 x 10752 | 0.5202029052
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0 | 1.50000000000000 0.0598122 0.0168172 0.6359686949
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