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HAMILTONIAN INSERTED GRAPHS AND SQUARES

L.K. Pramanik* and M.R. Adhikari**

Abstract. In this paper we characterize the graphs whose inserted
graphs are Hamiltonian, and we study the relationship between
Hamiltonian graphs and inserted graphs. Also we prove that if a
connected graph G contains at least 3 vertices then inserted graph
of the square of G is Hamiltonian and if G contains at least 3 edges
then the square of inserted graph of G is Hamiltonian.

1. Introduction

In this paper, by a graph we mean an undirected, finite graph without
loops and multiple edges. Let G be a graph with vertex set VG and edge
set EG. Each member of VG∪EG will be called an element of G. A graph
G is called trivial graph if it has a vertex set with single vertex and a null
edge set. The degree of a vertex v of the graph G is denoted by dG(v).
If e be an edge of a graph G with end vertices x and y, then we denote
the edge e, by e = xy and we define the degree of e by dG(x)+dG(y)−2.
A vertex or an edge is called odd or even depending on whether it has
odd or even degree. The graph G is called Hamiltonian graph if it has
a Hamiltonian cycle i.e, a cycle containing all vertices of G.

We introduce the notions of box graph B(G) and inserted graph I(G)
of a non-trivial graph G in [3].

In §2, we recall some definitions and results which will be used in this
paper.

In §3, we give a necessary and sufficient condition for the Hamiltonian
inserted graphs. More particularly for a connected graph G the inserted
graph I(G) is Hamiltonian if and only if there is a closed trail in G which
contains at least one end-vertex of each edge of G. Also prove that if
G is graph with n ≥ 4 vertices and at least one edge and for each edge
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e = xy, dG(x)+dG(y) ≥ n, then the inserted graph I(G) is Hamiltonian
and if G ⊆ Kn,n be a bipartite graph with at least one edge where n ≥ 3
and for each edge e = xy, dG(x)+dG(y) ≥ n+1, then the inserted graph
I(G) is Hamiltonian unless G is isomorphic to the graph of Figure 1.

In §4, we prove that if G be a connected graph with p ≥ 3 vertices,
then I(G2) is Hamiltonian. Also prove that if G be a connected graph
with q ≥ 3 edges, then [I(G)]2 is Hamiltonian.

2. Preliminaries

In this section we recall some definitions and results.

Definition 2.1. A walk in a graph G is an alternating sequence of
vertices and edges as v1, e1, v2, e2, ..., vm−1, em−1, vm such that ei is the
edge joining vi and vi+1(1 ≤ i ≤ m−1). We shall call v1, v2, ..., vm−1, vm

the vertex-sequence of this walk. A spanning walk of G is a walk in which
each vertex of G appears at least once. The walk is called path if the
vertices v1, v2, ..., vm are distinct. The walk is called trail if the edges
e1, e2, ..., em−1 are distinct. The trail is closed if v1 = vm.

Definition 2.2. ([6]) A cycle of a graph G is a closed walk v1, e1, v2,
e2, · · · , vm, em, v1 in which the vertices v1, v2, · · · , vm are distinct and
m ≥ 3. A graph G is called Hamiltonian if G has a cycle containing all
the vertices of G such a cycle is called Hamiltonian cycle.

Definition 2.3. ([7]) For a graph G, the square of G, i.e., G2 is a
graph with the property that there always exists a one-one correspon-
dence between its vertices and the vertices of G such that two vertices of
G2 are adjacent if the corresponding vertices of G are joined by a path
of length one or two.

Definition 2.4. ([3]) A new graph can be constructed by inserting a
new vertex on each edge of a non-trivial graph G, the resulting graph is
called Box graph of G, denoted by B(G). For an edge e of G, e denotes
the vertex of B(G) corresponding to the edge e.

The graph B(G) has the property that, there always exists a one-one
correspondence between the vertices and the elements of G such that
any two vertices of B(G) are adjacent if and only if the corresponding
elements of G are an edge and an incident vertex. Obviously B(G)
is a bipartite graph whose number of vertices is equal to the number of
elements of G. Moreover if VG = {v1, v2, ..., vn} and EG = {e1, e2, ..., em}
then VB(G) = {v1, v2, ..., vn, e1, e2, ..., em}.
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Definition 2.5. ([3]) Let IG be the set of all inserted vertices in
B(G). A graph I(G)with vertex set IG is called the inserted graph
in which any two vertices are adjacent if they are joined by a path of
length two in B(G). Therefore if EG = {e1, e2, ..., em} then IG = VI(G) =
{e1, e2, ..., em}. Also the degree of ei in I(G) is equals to the degree of
ei, i = 1, 2, ..., m in G.

3. Hamiltonian I(G)

Theorem 3.1. The graph I(G) is Hamiltonian if and only if there is
a closed trail in G which includes at least one end vertex of each edge
of G.

Proof. Let us suppose, that there is a closed trail v1, e1, v2, e2, · · · ,
vn, en, v1 in G which includes at least one end vertex of each edge of G.
Divide the edges of G not in this closed trail into n disjoint sets S1, ..., Sn

such that the member of Si are incident with vi. If Si = {x1
i , ..., x

r(i)
i },

then en, x1
1, · · · , x

r(1)
1 , e1, x

1
2, · · · , x

r(2)
2 , e2, · · · , x1

n, · · · , x
r(n)
n , en is the ver-

tex-sequences of an Hamiltonian cycle of I(G).
To prove the converse, let us assume that I(G) has an Hamiltonian

cycle with vertex-sequence e1, e2, · · · , ek, e1, where e1, e2, · · · , ek are the
distinct edges of G. Let vi be the common end vertex of ei and ei+1

in G for i = 1, 2, · · · , k − 1 and also let vk be the common end ver-
tex of ek and e1. If v1 = v2 = ... = vk the sequence with sole term
v1 is in a trivial sense, a closed trail which includes an end vertex of
each edge of G. Otherwise, let vj(1), vj(2), ..., vj(p) be the subsequence
of v1, v2, ..., vk consisting of the consecutively distinct vertices among
v1, v2, ..., vk; specifically

vj(r) = vi 6= vj(r+1) for j(r) ≤ i ≤ j(r+1) and r = 1, 2, ..., p−1...(1)

and vj(p) = vh 6= vj(1) for h ≥ j(p) and h < j(1).......................(2)
Then for r = 2, ..., p the vertices vj(r−1) = vj(r)−1 and vj(r) are distinct
vertices incident with ej(r) in G, they are joint by ej(r); and similarly vj(p)

is joined by ej(p) and ej(1). Hence vj(p), ej(1), vj(1), ej(2), vj(2), ..., ej(p), vj(p)

is a closed trail in G which includes each vj and hence includes an end
vertex of each edge of G, as desired.

Theorem 3.2. Let G be a graph with n ≥ 4 vertices and at least one
edge and for each edge e = xy, dG(x) + dG(y) ≥ n, then the inserted
graph I(G) is Hamiltonian.
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Proof. According to the Theorem 3.1, it it is sufficient to show that
G has a closed trail which includes at least one vertex of each edge of
G. First suppose that G has no cycle. Then there is an edge xy where
dG(x) = 1. But then dG(y) = n− 1 and y is joined to all other vertices
of G. It now follows that G is isomorphic to K1,n−1 and hence I(G)
is isomorphic to Kn−1. Thus I(G) has a Hamiltonian cycle. We now
assume G has a cycle and hence a non-trivial closed trail.

Let γ be a closed trail which omits the fewest number n−t of vertices,
among all closed trails of G. Let A consist of those vertices which occur
in γ, and A those that do not. So | A |= t and | A |= n − t. Since
γ omits the fewest possible number of vertices, neither of the following
can exist:

A cycle µ which has at least one vertex in A and at least one vertex
not in A but none of whose edges belong to γ. ....................................(3)

A cycle µ exactly one of whose edges is an edge of γ and at least
one of whose vertices is not in A. .......................................................(4)

Suppose a cycle µ satisfying (3) existed. Let a be a vertex common
to µ and γ. Then there is a closed trail which includes all vertices and
edges of µ and γ. Suppose a cycle µ satisfying (4) existed. Let ab
be the edge belonging to µ and γ. Then there is a closed trail which
includes all vertices and edges of µ and γ except for the edge ab. In
either circumstances, we distinguish three cases.
Case 1. There is an edge e = xy such that x, y ∈ A and neither x nor
y is joined to a vertex in A.

Let ab be any edge of γ. Let A1 consist of those vertices in A to which
a is joined, let A2 consist of those vertices in A to which b is joined. Let
| A1 |= k and | A2 |= l. Then by the nonexistence of (4) A1 ∩ A2 = φ.
By hypothesis,

n ≤ dG(a) + dG(b) ≤ (t− 1 + k) + (t− 1 + l) or n ≤ 2t + k + l− 2..(5)
Since x and y are joined by an edge, it follows from the nonexistence of
(3) and (4) that there is at most one edge joining x to A1 ∪ A2 and at
most one edge joining y to A1 ∪A2. Hence

n ≤ dG(x) + dG(y) ≤ 2 + 2(n− t− k− l− 1) or 2t + 2k + 2l ≤ n...(6)
Combining (5) and (6) we obtain k + l ≤ −2, a contradiction.
Case 2. There is an edge e = xy such that x, y ∈ A and x but not y is
joined to a vertex in A.

Let dG(y) = r and y be joined to the vertices z1, z2, ..., zr−1 of A
different from x. If any of the vertices z1, z2, ..., zr−1 were not joined to
a vertex to of A, then we would have an edge ziy to which Case 1 applies.
Hence we may assume there are vertices a1, a2, ..., ar−1 ∈ A such that zi
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is joined to ai (i = 1, 2, ..., r − 1). It follows from the nonexistence of
(3) that ai 6= aj (1 ≤ i ≤ j ≤ r − 1) and that x can not be joined to
any of a1, a2, ..., ar−1. Thus

n ≤ dG(x)+dG(y) ≤ {t−(r−1)+n−t−1}+r....................................(7)
Thus dG(x) + dG(y) = n, and x is joined to all the vertices of A −
{a1, a2, ..., ar−1}. If r ≥ 2, we may pick an edge uai of γ where u 6=
a1, a2, ..., ar−1 and x is joined to u, contradicting the nonexistence of
(4). Thus dG(y) = r = 1 and dG(x) = n − 1. Since x is adjacent to all
vertices of G and hence to all vertices in A, it follows from the nonex-
istence of (4) again that t = 1. But this means G has no non-trivial
closed trails, contrary to our assumption.
Case 3. There is an edge e = xy such that x, y ∈ A and each of x and
y is joined to at least one vertex of A.

Let x be joined to k ≥ 1 vertices in A and to l ≥ 0 vertices in A.
Let y be joined to p ≥ 1 vertices in A and to q ≥ 0 vertices in A. Let
x be joined to a ∈ A. Then it follows from the nonexistence of (3) and
(40 that the p vertices of A joined to y can not be joined to a. By the
nonexistence of (3) y and the q vertices different from x of A joined to
it can not be joined to a. Thus

dG(a) ≤ (t−1−p)+(n−t−q−1) = n−p−q−2.................................(8)
But then

n ≤ dG(a)+dG(x) ≤ n−p−q−2+k+l+1 or, p+q+1 ≤ k+1..........(9)
Similar reasoning shows that if b ∈ A is joined to y then

dG(b) ≤ n−k−l−2 and, k+l+1 ≤ p+q........................................(10)
Hence from (9) and (10) we have

p+q+1 ≤ k+l ≤ p+q−1, .............................................................(11)
which is a contradiction.

Remark 1. It may be of interest that a graph may satisfy the hy-
pothesis of Theorem 3.2 and yet fail to have a Hamiltonian cycle. Such
a graph is obtained for n ≥ 4 by taking G to be the complete graph
Kn−1 with an additional vertex joined to one vertex of Kn−1.

We now state and prove a stronger theorem for bipartite graph. Parts
of the proof are similar to those of Theorem 3.2.

Theorem 3.3. Let G ⊆ Kn,n be a bipartite graph with at least one
edge where n ≥ 3 and for each edge e = xy, dG(x) + dG(y) ≥ n + 1,
then the inserted graph I(G) is Hamiltonian unless G is isomorphic to
the graph of Figure 1.

Proof. Let X and Y be disjoint sets of n vertices each such that every
edge of G joins a vertex of X to a vertex of Y . First suppose that G has
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no cycle. Then there exists an edge e = xy such that dG(x) = 1 where
x ∈ X and y ∈ Y . Hence n + 1 ≤ dG(x) + dG(y) = 1 + dG(y), so that y
is joined to each vertex in X. Since G has no cycle, every other vertex

Figure 1
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of Y is joined to at most one vertex in X. Suppose there were an edge
x
′
y
′

where y
′ ∈ Y and y

′ 6= y. Then dG(y
′
) = 1 and it follows that

x
′

is joined to all vertices in Y . Since G has no cycles, it now follows
that either G is isomorphic to the graph consisting of Kn,1 and n − 1
isolated vertices or the graph G0 of Figure 1. Since I(Kn,1) is isomorphic
to Kn and n ≥ 3, I(Kn,1) has a Hamiltonian cycle. The graph I(G0)
is isomorphic to the graph consisting two disjoint copies of Kn,1 along
with a new vertex joined to each of the order 2(n− 1) vertices and does
not have a Hamiltonian cycle. Hence the theorem holds when G has no
cycle.

Now assume that G has a cycle and hence a closed trail containing at
least two vertices of X and at lest two vertices of Y . Among all closed
trails of G, let γ be one which omit the fewest number of vertices. In
addition, we choose such a γ so that there is a minimum number of
edges having no vertex as a vertex of γ. Let γ omit n− r vertices of X
and n − s vertices of Y . Let A1 and A2 consist of those vertices which
occur in γ of X and Y respectively. Also let A1 and A2 consist of those
vertices which not occur in γ of X and Y respectively. Then | A1 |= r
and | A2 |= s. Let A = A1 ∩A2 and A = A1 ∩A2. Then neither (3) nor
(4) can exist where (3) and (4) are defined in the proof of the Theorem
3.2.

Suppose there is an edge neither of whose vertices belong to A.
Case 1. There is an edge e = xy such that x ∈ A1, y ∈ A2 and neither
x nor y is joined to a vertex in A.

Let ab be any edge of γ where a ∈ A1 and b ∈ A2. Suppose a is joined
to k vertices of A2 and b is joined to l vertices of A1. Then

n+1 ≤ dG(a)+dG(b) ≤ s+k+r+l.................................................(12)
Since (3) and (4) can not occur, it follows that
n+1 ≤ dG(x)+dG(y) ≤ (n−r−l)+(n−s−k)+1.............................(13)
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From (12) and (13) we obtain the contradiction n + 1 ≤ n.
Case 2. There is an edge e = xy such that x ∈ A1, y ∈ A2 and x, but
not y is joined to a vertex in A.

Let dG(y) = t and y be joined to the vertices x1, x2, ..., xt−1 of A
different from x. If any of the vertices x1, x2, ..., xt−1 were not joined to
a vertex of A2, then we would have an edge xiy to which Case 1 applied.
Hence we may assume there are vertices y1, y2, ..., yt−1 ∈ A2 such that
xi is joined to yi (i = 1, 2, ..., t − 1). It follows from the nonexistence
of (3) that the vertices y1, y2, ..., yt−1 are distinct and that x can not be
joined to any of y1, y2, ..., yt−1. Thus

n+1 ≤ dG(x)+dG(y) ≤ {s−(t−1)+n−s}+t = n+1.....................(14)

We conclude that dG(x) = n−t+1 and that each vertex of A2 is joined
to at least one of the vertices x, x1, x2, ..., xt−1. Since γ is a non-trivial
closed trail, s ≥ 2. Suppose t ≥ 2. Consider a portion of γ of the form
u, uv, v, vw, w, where u,w ∈ A2 and u is joined to x and w is joined to xj .
Then we may replace this portion of γ by u, ux, x, e, y, yxj , xj , xjw,w to
obtain a closed trail which includes more vertices of G than γ. It follows
that t = 1, and that y is joined only to x but x is joined to all vertices
in Y . Consider an edge ab of γ where a ∈ A1 and b ∈ A2. Since (3) and
(4) can not exist, it follows that a can not joined to a vertex in A2. Now
consider a portion of γ of the form b, ba, a, ac, c, where b, c ∈ A2. Then x
is joined to both b and c and we may replace the above portion of γ by
b, bx, x, xc, c. The resulting closed trail γ

′
omits no more vertices than γ

does. Moreover, the each edge with a vertex in γ also has a vertex in γ
′
.

In addition the edge e has a vertex in γ
′
. This contradicts our choice of

γ.
Case 3. There is an edge e = xy such that x ∈ A1, y ∈ A2 such that x
and y are joined to at least one vertex in A.

We may assume Case 1 and Case 2 do not occur. Let B2 consist
of those vertices in A2 joined to x and B2 consist of those vertices in
A2 joined to x. Let B1 consist of those vertices in A1 joined to y and
B1 consist of those vertices in A1 joined to y. Let | B2 |= k ≥ 1,
| B2 |= l ≥ 0, | B1 |= p ≥ 1, | B1 |= q ≥ 0. Let a ∈ B2 and b ∈ B1.
Then it follows from the nonexistence of (3) and (4) that a can not be
joined to any vertex in B1 and x is the only vertex of B1 joined to a.
Thus

n + 1 ≤ dG(a) + dG(x) ≤ {(r − p) + (n − r) − q} + k + l + 1 or,
p + q ≤ k + l......(15)
Similarly,
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n + 1 ≤ dG(b) + dG(y) ≤ {(s − k) + (n − s) − l} + p + q + 1 or,
k + 1 ≤ p + q......(16)
Hence p+q = k+l. Thus dG(a) = n−p−q and dG(b) = n−k−l. Thus a
and hence each vertex of B2 is joined to x, all vertices in A1−B1 and all
vertices in A1−B1. Likewise each vertex of B1 is joined to y all vertices in
A2−B2 and all vertices A2−B2. Let z ∈ A1−B1, if such a vertex exists.
Suppose z were joined to a vertex u ∈ A2 −B2. Then z, u, b, y, x, a, z is
the vertex-sequence of a cycle which satisfies (3) or (4). Thus z is joined
to no vertex in A2−B2. Suppose z were joined to a vertex u ∈ B2 with
u 6= a. Then z, u, x, a, z is the vertex-sequence of a cycle satisfying (3).
Suppose z were joined to a vertex u ∈ A2 − B2. Then z, u, b, y, x, a, z
is a vertex-sequence of a cycle satisfying (3). Finally suppose z were
joined to a vertex u ∈ B2. Then z, u, x, a, z is a vertex-sequence of a
cycle satisfying (3). Thus z can be joined only to a. Since az is an
edge, it follows that dG(z) = 1 and that dG(a) = n. Thus p = q = 0, a
contradiction. It follows that A1 = B1 and likewise that A2 = B2. Thus
A1 contains exactly q+1 vertices, all joined to y and A2 contains exactly
l + 1 vertices, all joined to x. By repeating the preceding argument on
each of the edges joining x to a vertex of A2, we conclude that each
vertex of A1 is joined to each vertex of A2.

Suppose there were a vertex x
′ 6= x in A1. Then x

′
is joined to some

vertex u ∈ A2 − B2. But then x
′
, u, b, y, x

′
is the vertex-sequence of a

cycle which contradicts the nonexistence of a cycle satisfying (4). Thus
A1 = {x} and similarly, A2 = {y}. It follows that q = l = 0 and since
p + q = k + l, p = k.

Now let a
′ ∈ B2 and b

′ ∈ A1 −B1 so that there is an edge joining a
′

and b
′
. Then

n+1 ≤ dG(a
′
)+dG(b

′
) = 1+(n−p−l)+dG(b

′
)................................(17)

so that p+1 ≤ dG(b
′
). It follows that each vertex of A1−B1 is joined to

at least one vertex of A2−B2. Similarly, each vertex of A2−B2 is joined
to at least one vertex of A1−B1. Since γ is a closed trail and no vertex
of B2 is joined to a vertex of B1, it follows that n−1−p ≥ 2. Moreover,
since n + 1 ≤ dG(x) + dG(y) = 2(1 + p), p ≥ n− 1− p ≥ 2. Since each
vertex of B1 is joined to each vertex of A2 −B2, it follows by induction
that there is trail which joins the vertex b of B1 to any specified vertex
u of A2−B2 and which includes all vertices of B1∪ (A2−B2). Likewise,
there is a trail joining the vertex a of B2 to any specified vertex v of
A1−B1 and which includes all vertices of B2∪ (A1−B1). Choose u and
v so that uv an edge. Since ax, e and yb are edges of G, there is a closed
trail which includes all vertices of G, contradicting the choice of γ.
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Hence the theorem follows.

4. Hamiltonian I(G2) and [I(G)]2

Lemma 4.1. Let G be a connected graph with p ≥ 3 vertices and
such that it contains a vertex u with dG(u) = 1 and a vertex w with
dG(w) = p − 1. If v is a vertex of G such that u 6= v 6= w, then there
exists a spanning path in I(G) joining the vertices uw and vw of I(G).

Proof. The case when p = 3 is obvious. Assume that p = n ≥ 4 and
that for p = n − 1 the lemma is proved. The case when G is a star is
simple. Assume G is not a star. Then there is a vertex x of G such
that dG(x) ≥ 2 and u 6= x 6= w. By v1, .., vk we denote the vertices of G
different from w and adjacent to x. Obviously, there is a spanning path S
in I(G−x) joining the vertices uw and vw. There is vertex rs of I(G−x)
such that rs v1w is an edge in S. It is evident that either v1 ∈ {r, s}
or w ∈ {r, s}. If v1 ∈ {r, s}, then rs, xv1, ..., xvk, xw, v1w be the vertex-
sequence of a path P . If w ∈ {r, s}, then rs, xw, xvk, ..., xv1, v1w be the
vertex-sequence of the path P . If in S we replace the edge rs v1w by
the path P , we obtain a spanning path in I(G) joining the vertices uw
and vw.

Theorem 4.2. If G be a connected graph with p ≥ 3 vertices, then
I(G2) is Hamiltonian.

Proof. The case when p = 3 is obvious. Assume that p = n ≥ 4
and that for p = n − 1 the theorem is proved. The case when G = Kp

is simple. Assume that G 6= Kp. Then there is vertex w of G with
degree not exceeding p− 2 and such that G−w is connected. By F we
denote the graph with the vertex t of G such that dG(t, w) ≤ 2, and with
the edges t1t2 such that either w ∈ {t1, t2} and 1 ≤ dG(t1, t2) ≤ 2, or
t1 6= w 6= t2 and dG(t1, t2) = 2 < d(G−w)(t1, t2). Notice that the graphs
(G − w)2 and F are edge-disjoint and that x is an edge in G2 if and
only if it is an edge either in (G−w)2 or in F . There are vertices u and
v of G such that v is adjacent to w in G, u is adjacent to v in G and
dG(u,w) = 2. Obviously, u and v vertices both in (G − w)2 and in F ,
and u has degree 1 in F . By Lemma 4.1, there is a spanning path S0

in I(F ) joining uw with vw. Similarly, there is a spanning path S1 in
I(F ) joining vw with uw. By the induction hypothesis, there exits a a
Hamiltonian cycle H in I((G−w)2). Consider a vertex rs of I((G−w)2)
such that rs uv is an edge in H. If u ∈ {r, s}, then by P we denote the
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path rsS0 uv; if v ∈ {r, s}, then by P we denote the path rsS1 uv. It
is easy to see that if in H we replace the edge rs uv by P we obtain a
Hamiltonian cycle in I(G2).

Lemma 4.3. Let T be any tree with q ≥ 3 edges. Then [I(T )]2 is
Hamiltonian.

Proof. The case when q = 3 is obvious. Let q = n ≥ 4 and assume
that for any q, 3 ≤ q < n the lemma is proved. The case when T is a
path is simple. We shall assume that T is not a path. Then T contains
distinct vertices v0, ..., vk such that 1 ≤ k ≤ q−2 where v0 is adjacent to
v1, . . . , vk−1 is adjacent to vk, v0 has degree at least 3, vk has degree 1
and if 0 < j < k, then vj has degree 2. By T0 we denote the tree which we
obtain from T by deleting the vertices v1, ..., vk. By u1, ..., ui we denote
the vertices which are adjacent to v0 in T0; obviously i ≥ 2. There is
a Hamiltonian cycle H in [I(T0)]2. It is easy to verify that H contains
such an edge x y of [I(T0)]2 that the edge x is incident with one of the
vertices u1, ..., ui and y is incident with v0. By P we denote the path in
[I(T )]2 such that if k = 1, then x, v0v1, y is the vertex-sequence of P , and
if k ≥ 2, then x, v0v1, v2v3, ..., vg−3vg−2, vg−1vg, vhvh−1, ..., v2v1, y is the
vertex-sequence of P , where g is the greatest odd integer not exceeding
k and h is the the greatest even integer not exceeding k. If in H we
replace x y by P , we obtain a Hamiltonian cycle in [I(T )]2.

Theorem 4.4. If G be a connected graph with q ≥ 3 edges, then
[I(G)]2 is Hamiltonian.

Proof. Consider a spanning tree T1 of G. Colour the edges of T1 in
red. Subdivide each uncoloured edges of G (if any) into two new edges
and colour one of them in red and other of them in blue (the choice
is arbitrary). By T2 we denote the graph consisting of the red edges.
Obviously T2 is a tree with at least 3 edges. It is easy to see that I(T2) is
isomorphic to a spanning subgraph of I(G). This implies that [I(T2)]2 is
isomorphic to a spanning subgraph of [I(G)]2. By Lemma 4.3, [I(T2)]2

is Hamiltonian. Hence the theorem follows.
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