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ON GENERAL BEST PROXIMITY PAIRS AND
EQUILIBRIUM PAIRS IN FREE GENERALIZED

GAMES1

Won Kyu Kim*

Abstract. In this paper, using the fixed point theorem for acyclic
factorizable multifunctions, we shall prove an existence theorem of
general best proximity pairs and equilibrium pairs for free general-
ized games.

1. Introduction

In 1969, Ky Fan [4] proved the best approximation theorem which
generalizes the previous known fixed point theorems, and his main result
states that if K is a non-empty compact convex subset of a locally convex
Hausdorff topological vector space E with a continuous seminorm p, and
f : K → E is a single valued continuous function, then there exists an
element x̄ ∈ K such that p(f(x̄)− x̄) = inf{p(f(x̄)− y) | y ∈ K}.
Since then, a number of generalizations of this theorem have been ob-
tained in various directions by several authors (e.g., see [7-10]).

In a recent paper [5], Kim and Lee introduce a new concept of free
generalized games which generalizes the previous concept of generalized
games in [2, 3, 11], and using the fixed point theorem for Kakutani
factorizable multifunctions, they prove the existence theorems of best
proximity pairs and equilibrium pairs for free generalized games.

In this paper, using Park’s fixed point theorem for acyclic factoriz-
able multifunctions, we shall prove some generalizations of the existence
theorems for best proximity pairs due to Srinivasan and Veeramani [10],
and Kim and Lee [5]. As an application, we shall prove new existence
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theorem of general equilibrium pairs for free generalized games which
generalize the corresponding results due to Srinivasan and Veeramani
[10], and Kim and Lee [5] in several aspects.

2. Preliminaries

Recall the following definitions of proximity concepts in [1,7]. Let X
and Y be any two non-empty subsets of a Hausdorff topological vector
space E, and let p be a continuous seminorm on E. For y ∈ E, define
dp(y, X) := inf{p(y − x) |x ∈ X}, and dp(X,Y ) := inf{p(x − y) |x ∈
X, y ∈ Y }. If X = {x} and Y = {y}, then dp(x, y) denotes dp(X, Y )
which is precisely p(x − y). Let I be a finite (or an infinite) index
set. For each i ∈ I, let X and Yi be non-empty subsets of a Hausdorff
topological vector space E with a continuous seminorm p. Then we can
use the following notations: for each i ∈ I,
dp(X, Yi) := inf{dp(x, y) | x ∈ X, y ∈ Yi};
Xo := {x ∈ X | for each i ∈ I, ∃ yi ∈ Yi such that dp(x, yi) = dp(X,Yi) };
Y o

i := {y ∈ Yi | there exists x ∈ X such that dp(x, y) = dp(X, Yi) }.
Let X and Y be two non-empty subsets of a Hausdorff topological

vector space E with a continuous seminorm p, and let T : X → 2Y be a
multifunction. Then the pair (x̄, T (x̄)) is called the best proximity pair
[10] for T if dp(x̄, T (x̄)) = dp(x̄, ȳ) = dp(X, Y ) for some ȳ ∈ T (x̄). Then
the best proximity pair theorem seeks an appropriate solution which is
optimal.

We shall need more definitions on proximity concepts as follows: Let
X be a non-empty subset of a locally convex Hausdorff topological vector
space E with a continuous seminorm p. If X is a compact and convex
subset of E, then the set PX(z) of all p−best approximations in X to
any element z ∈ E, defined by

PX(z) := {x ∈ X | dp(z, x) = dp(z,X)},
is a non-empty compact and convex subset of X, and every point in
PX(z) is called a best proximity point of z in X. Also, any point x ∈ X
for which dp(x, Y ) = dp(X, Y ) is called a best proximity point of Y
in X, and points x ∈ X, y ∈ Y satisfying p(x − y) = dp(X, Y ) are
called best proximity points of the pair (X, Y ). By Proposition 2.1 in
[15], we can see that the metric projection mapping z 7→ PX(z) is an
upper semicontinuous multifunction on E. For the properties of metric
projection (see [7, 8]).
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Let C be a non-empty convex subset of E. A single valued function
g : C → E is said to be quasi p-affine [8] if for each real number r ≥ 0
and x ∈ E, the set {y ∈ C | p(g(y) − x) ≤ r} is convex. Let A be a
non-empty subset of E. Then, g is said to be p-continuous [8] in A if
{p(

g(xα)− g(x)
)} → 0 for each x ∈ A and every net xα in C converging

to x ∈ A. If g is continuous, then it is clear that g is p-continuous.
A non-empty topological space is called acyclic if all its reduced Čech

homology groups over rationals vanish. Then, a multifunction T : X →
2Y from a topological space X to another topological space Y is said to
be an acyclic multifunction [6] if the following conditions are satisfied:
(i) T is upper semicontinuous; (ii) T (x) is a non-empty compact and
acyclic subset of Y .

The collection of all acyclic multifunctions from X to Y is denoted
by V(X,Y ). A multifunction T : X → 2Y from a topological space
X to another topological space Y is said to be an acyclic factorizable
multifunction [6] if it can be expressed as a composition of finitely many
acyclic multifunctions. The collection of all acyclic factorizable multi-
functions from X to Y is denoted by VC(X, Y ).

The following fixed point theorem, which is a special form of a fixed
point theorem due to Park [6], is also essential in proving our results:

Lemma 2.1. If X is a non-empty compact and convex subset of
a locally convex Hausdorff topological vector space, then any acyclic
factorizable multifunction T : X → 2X has a fixed point, i.e., if
T ∈ VC(X,X), then there exists a point x̄ ∈ X such that x̄ ∈ T (x̄).

Now we recall the following equilibrium pair concept in [5] which gen-
eralizes the previous concept of abstract economies in [2, 3, 11]. Let I be
a finite or an infinite set of locations or agents. For each i ∈ I, let Xi be a
non-empty set of manufacturing commodities, and Yi be a non-empty set
of selling commodities. A free generalized game (or free abstract economy
) [5] Γ = (Xi, Yi, Ai, Pi)i∈I is defined as a family of ordered quadruples
(Xi, Yi, Ai, Pi) where Xi and Yi are non-empty subsets of a locally con-
vex Hausdorff topological vector space E with a continuous seminorm p,
and Ai : X = Πj∈IXj → 2Yi is a constraint correspondence, and Pi : Y =
Πj∈IYj → 2Yi is a preference correspondence. An equilibrium pair [5] for
Γ is a pair of points (x̄, ȳ) =

(
(x̄i)i∈I , (ȳi)i∈I

) ∈ X×Y such that for each
i ∈ I, ȳi ∈ Ai(x̄) with dp(x̄i, ȳi) = dp(Xi, Yi), and Ai(x̄) ∩ Pi(ȳ) = ∅.

In particular, when I = {1, · · · , n}, we may call Γ a free n-person
game.

When Xi = Yi for each i ∈ I, then the previous definitions can be re-
duced to the standard definitions of equilibrium theory in mathematical
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economics due to Yannelis-Prabhakar [11]. For more economic meanings
and interpretations (see [5]).

3. General best proximity pairs and equilibrium pairs

Using Lemma 2.1, we begin with the following existence theorem for
general best proximity pairs, which generalizes Theorem 2 in [5] to the
acyclic-valued multifunctions:

Theorem 3.1. For each i ∈ I = {1, 2, · · · , n}, let X and Yi be
non-empty compact and convex subsets of a locally convex Hausdorff
topological vector space E with a continuous seminorm p, and Xo is
a non-empty subset of X. Let Ti : X → 2Yi be an upper semicontin-
uous multifunction in Xo such that each Ti(x) is non-empty compact,
and Ti(x) ∩ Y o

i is an acyclic subset of Yi, and let g : Xo → Xo be a
p-continuous, proper, quasi p-affine, and surjective mapping on Xo.
Assume that for each x ∈ Xo, there exists (y1, . . . , yn) ∈ Πi∈ITi(x)
such that

∃xo ∈ X with dp(xo, yi) = dp(X,Yi) for each i ∈ I, (∗)
and ∩i∈IPX(yi) is non-empty for each (y1, . . . , yn) ∈ Πi∈IY

o
i .

Then there exists a point x̄ ∈ X satisfying the system of best prox-
imity pairs, i.e., for each i ∈ I, {g(x̄)} × Ti(x̄) ⊆ X × Yi such that
dp

(
g(x̄), Ti(x̄)

)
= dp(X, Yi).

Proof. As shown in the proof of Theorem 1 of [5], we can see that
Xo and Y o

i are non-empty compact and convex. Also, since X is non-
empty compact and convex, it is known that the metric projection map
PX : E → 2X is upper semicontinuous in E such that PX(z) is a non-
empty compact and convex subset of X for each z ∈ E. For each i ∈ I,
we now define a multifunction T ′i : Xo → 2Y o

i by

T ′i (x) := Ti(x) ∩ Y o
i for each x ∈ Xo.

Then, by the assumption, T ′i is upper semicontinuous in Xo such that
each T ′i (x) is a non-empty compact and acyclic subset of Y o

i . Also, we
can see that PX(Y o

i ) ⊆ Xo as in the proof of Theorem 1 in [5].
Now we introduce the multifunctions T ′ : Xo → 2Πi∈IY o

i , defined by

T ′(x) := Πi∈IT
′
i (x) for each x ∈ Xo;

and P ′
X : Πi∈IY

o
i → 2Xo

, defined by

P ′
X(y1, . . . , yn) :=

⋂

i∈I

PX(yi) for each (y1, . . . , yn) ∈ Πi∈IY
o
i .
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Then, T ′ is upper semicontinuous in Xo such that T ′(x) is non-
empty compact and acyclic in Πi∈IY

o
i . By the assumption (∗), each

P ′
X(y1, . . . , yn) is a non-empty subset in Xo so that each P ′

X(y1, . . . , yn)
is non-empty closed convex. And we can see that the multifunction
g−1 ◦ P ′

X : Πi∈IY
o
i → 2Xo

is an acyclic multifunction. Therefore,
the composition map (g−1 ◦ P ′

X) ◦ T ′ : Xo → 2Xo
is an acyclic fac-

torizable multifunction in Xo. Therefore, by Lemma 2.1, there exists
a fixed point x̄ ∈ Xo such that x̄ ∈ ((g−1 ◦ P ′

X) ◦ T ′)(x̄), that is,
g(x̄) ∈ (P ′

X ◦T ′)(x̄). Then, g(x̄) ∈ P ′
X

(
T ′1(x̄), . . . , T ′n(x̄)

)
so that there

exists (ȳ1, . . . , ȳn) ∈ Πi∈I

(
Ti(x̄)∩Y o

i

)
such that g(x̄) ∈ P ′

X(ȳ1, . . . , ȳn) =⋂
i∈I PX(ȳi). Since each ȳi is an element in Y o

i , there exists an x′i ∈ X
such that dp(x′i, ȳi) = dp(X, Yi) for each i ∈ I. Therefore, for each
i ∈ I,

dp(g(x̄), Ti(x̄)) ≤ dp(g(x̄), ȳi) = dp(ȳi, X) ≤ dp(ȳi, x
′
i) = dp(X,Yi)

so that dp(g(x̄), Ti(x̄)) = dp(X, Yi), which completes the proof.

Remark 1. (1) Theorem 1 further generalizes Theorem 2 in [5] in
the following aspects:

(i) the underlying space is a locally convex Hausdorff topological vec-
tor space instead of a normed linear space;

(ii) each Ti is an acyclic multifunction instead of a Kakutani multi-
function;
(2) When g = idXo and E is a normed linear space in Theorem 1, then
the conclusion is reduced to Theorem 2 in [5].

Before stating the existence of equilibrium pair for the free n-person
game, we shall need the following lemma which is the special case of
Theorem 3 due to Ding-Kim-Tan [3] in a compact convex setting:

Lemma 3.2. Let Γ = (Yi, Φi)i∈I be a qualitative game where I is a
(possibly infinite) set of agents such that for each i ∈ I,

(1) Yi is a non-empty compact and convex subset of a locally convex
Hausdorff topological vector space;

(2) the correspondence Φi : Y = Πj∈IYj → 2Yi is L∗-majorized in
Y ;

(3) the set Wi := {y ∈ Y |Φi(y) 6= ∅} is (possibly empty) open in Y .
Then there exists ȳ ∈ Y such that for each i ∈ I, Φi(ȳ) = ∅.
Next, using Lemma 3.2, we shall prove the existence of equilibrium

pairs for a free n-person game which generalizes Theorem 4 in [5] as
follows:
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Theorem 3.3. Let Γ = (X, Yi, Ai, Pi)i∈I be a free n-person game
such that for each i ∈ I = {1, . . . , n},

(1) X is a non-empty compact and convex subset of a locally convex
Hausdorff topological vector space E with a continuous seminorm p, Xo

a non-empty subset of X, Yi a non-empty compact and convex subset
of E, and let Y := Πj∈IYj ;

(2) Ai : X → 2Yi is an upper semicontinuous correspondence such
that each Ai(x) is a non-empty closed convex subset of Yi, and satisfies
the condition (∗) in Theorem 1;

(3) Pi : Y → 2Yi is a preference correspondence which is L∗-majorized
in Y ;

(4) Pi(y) is non-empty for each y = (yi)i∈I ∈ Y with yi ∈ Y \ Aix ,
whenever Aix := {z ∈ Yi | z ∈ Ai(x) and dp(x, z) = dp(X, Yi) } is non-
empty;

(5) the set Wi := {y ∈ Y |Ai(x) ∩ Pi(y) 6= ∅} is open in Y whenever
Aix is non-empty.

Then there exists an equilibrium pair (x̄, ȳ) = (x̄, (ȳi)i∈I) ∈ X × Y
for Γ, i.e., for each i ∈ I, ȳi ∈ Ai(x̄) and dp(x̄, ȳi) = dp(X, Yi) such
that Ai(x̄) ∩ Pi(ȳ) = ∅.

Proof. For each i ∈ I, since Ai satisfies the whole assumptions of
Theorem 3.1 in case g = idXo , there exists a point x̄ ∈ X satisfying the
system of best proximity pairs, i.e., for each i ∈ I, {x̄} × Ai(x̄) ⊆
X × Yi such that dp(x̄, Ai(x̄)) = dp(X,Yi). Now we may denote the
non-empty best proximity set of the correspondence Ai at x̄ simply by

Ai := {z ∈ Yi | z ∈ Ai(x̄) and dp(x̄, z) = dp(X,Yi) }.
Then, it is easy to see that each Ai is a closed and convex subset of
a compact convex set Ai(x̄). It remains to show that there exists
a point ȳ = (ȳi)i∈I ∈ Y such that for each i ∈ I, ȳi ∈ Ai(x̄) and
Ai(x̄) ∩ Pi(ȳ) = ∅.

For each i ∈ I, we now define a multifunction φi : Y → 2Yi by
for each y = (y1, . . . , yn) ∈ Y ,

φi(y) :=

{
Pi(y), if yi /∈ Ai,

Ai(x̄) ∩ Pi(y), if yi ∈ Ai.

In order to apply Lemma 3.2 to φi for each i ∈ I, we should check
the assumptions (2) and (3) of Lemma 3.2. We first show that the set
{y ∈ Y |φi(y) 6= ∅} is open in Y for each i ∈ I. By the assumption (5),
the set Wi := {y ∈ Y |Ai(x̄) ∩ Pi(y) 6= ∅} is open in Y . Note that the
projection map πi : Y → Yi, defined by πi(y1, . . . , yn) = yi, is an open
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map in Y . Then we have
{y ∈ Y |φi(y) 6= ∅}

= {y ∈ Y \ π−1
i (Ai) |φi(y) 6= ∅} ∪ {y ∈ π−1

i (Ai) |φi(y) 6= ∅}
= {y ∈ Y \ π−1

i (Ai) |Pi(y) 6= ∅} ∪ {y ∈ π−1
i (Ai) |Ai(x̄) ∩ Pi(y) 6= ∅}

=
(
Y \ π−1

i (Ai)
) ∪ (

Wi ∩ π−1
i (Ai)

)
=

(
Y \ π−1

i (Ai)
) ∪Wi.

Since the projection mapping πi is open and Ai is compact, we have
π−1

i (Ai) is closed so that the set {y ∈ Y |φi(y) 6= ∅} is open in Y by the
assumption (5).

Next, we shall show that φi is L∗-majorized in Y . By the assumption
(4), for each y ∈ Y with yi /∈ Ai, then φi(y) = Pi(y) is non-empty
so that there exists an L∗-majorant ψi of φi in Y by the assumption
(3). For each y ∈ Y with yi ∈ Ai, then φi(y) = Ai(x̄) ∩ Pi(y). If
φi(y) = Ai(x̄) ∩ Pi(y) is non-empty, then Pi(y) is non-empty. By the
assumption (3) again, there exists an L∗-majorant ψi of Pi in Y . Since
φi(y) = Ai(x̄) ∩ Pi(y) ⊂ Pi(y) for each y ∈ Y with yi ∈ Ai, ψi is also
an L∗-majorant of φi in Y . Therefore, φi is L∗-majorized in Y for each
i ∈ I, and hence the whole hypotheses of Lemma 3.2 are satisfied so that
there exists a point ȳ = (ȳi)i∈I ∈ Y such that φi(ȳ) = ∅ for each i ∈ I.
If ȳi /∈ Ai for some i ∈ I, then by the assumption (4), φi(ȳ) = Pi(ȳ) is
a non-empty subset of Yi, which is a contradiction. Therefore, for each
i ∈ I, we must have ȳi ∈ Ai and φi(ȳ) = Ai(x̄) ∩ Pi(ȳ) = ∅. This
completes the proof.

Remark 2. Theorem 3.3 further generalizes Theorem 4 in [5] in the
following aspects:

(i) X need not be a compact set in a normed linear space;
(ii) Pi need not be of class L but L∗-majorized.
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