MORITA EQUIVALENCE FOR HOMOGENEOUS C^* -ALGEBRAS OVER LOWER DIMENSIONAL SPHERES

CHUN-GIL PARK*

ABSTRACT. All *d*-homogeneous C^* -algebras T^d over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ are constructed. It is shown that T^d are strongly Morita equivalent to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$.

1. Introduction

An important problem, in the bundle theory, is to compute the set [M, BPU(d)] of homotopy classes of continuous maps of a compact CWcomplex M into the classifying space BPU(d) of the Lie group PU(d). The
set [M, BPU(d)] is in bijective correspondence with the set of equivalence
classes of principal PU(d)-bundles over M, which is in bijective correspondence with the set of d-homogeneous C^* -algebras over M (see [5, 7]).

In [4], the authors showed that two separable C^* -algebras A and B are stably isomorphic if and only if they are strongly Morita equivalent, i.e., there exists an A-B-equivalence bimodule defined in [8]. All d-homogeneous C^* -algebras T^d over $\prod^{s_2} S^2 \times \prod^{s_1} S^1$ were constructed in [1, Theorem 2.5], and it was shown in [1, Theorem 3.3] that T^d are strongly Morita equivalent to $C(\prod^{s_2} S^2 \times \prod^{s_1} S^1)$.

In this paper, all *d*-homogeneous C^* -algebras T^d over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ are constructed. It is shown that T^d are stably isomorphic to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$. Thus T^d are strongly Morita equivalent to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$. By modifying the construction given in [1, Theorem 3.3], we are going to construct a T^d - $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$ -equivalence bimodule.

Received by the editors on March 20, 2006.

 $^{2000 \} Mathematics \ Subject \ Classifications: \ Primary \ 46L05, \ 55R10.$

Key words and phrases: equivalence bimodule.

2. Morita equivalence for homogeneous C^* -algebras over lower dimensional spheres

Krauss and Lawson [7, Proposition 2.10] proved that each *d*-homogeneous C^* -algebra over S^2 is isomorphic to one of the C^* -subalgebras $D_{d,k} = C_{g_k}(e_+^2 \amalg e_-^2, M_d(\mathbb{C})), \ k \in \mathbb{Z}_d$, given as follows: if $f \in D_{d,k}$, then the following condition is satisfied

$$f_{+}(z) = U(z)^{k} f_{-}(z) U(z)^{-k}$$

for all $z \in S^1 \subset \mathbb{C}$, where $U(z) \in PU(d) = \operatorname{Inn}(M_d(\mathbb{C}))$ is defined as

$$U(z) = \begin{pmatrix} 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & 0 \\ 0 & \dots & 0 & z \end{pmatrix}$$

and e_{+}^{n} (resp. e_{-}^{n}) is the *n*-dimensional northern (resp. southern) hemisphere.

In [3, Theorem 3], an $A_{\frac{k}{d}}$ - $C(\mathbb{T}^2)$ -equivalence bimodule was constructed for $A_{\frac{k}{d}}$ a rational rotation algebra, and in [1, Theorem 3.3], by modifying the construction given in [3, Theorem 3], a $D_{d,k}$ - $C(S^2)$ -equivalence bimodule was constructed. But using a slightly different trick, we are going to construct a $D_{d,k}$ - $C(S^2)$ -equivalence bimodule.

LEMMA 1. Each d-homogeneous C^* -algebra $D_{d,k}$ over S^2 is strongly Morita equivalent to $C(S^2)$.

Proof. Let $V(z)^k = \begin{pmatrix} 1 & 0 \\ 0 & z^k \end{pmatrix}$. The *d*-homogeneous C^* -algebra $D_{d,k}$ over S^2 can be realized as the C^* -algebra of matrices $(f_{ij})_{i,j=1}^d$ of functions f_{ij} with

$$f_{ij} \in C(S^2) \text{ if } i, j \in \{1, \cdots, d-2\}$$

$$\begin{pmatrix} f_{(d-1)i} \\ f_{di} \end{pmatrix} \in \Omega \quad \& \quad (f_{i(d-1)} \quad f_{id}) \in \Omega^* \text{ if } i \in \{1, \cdots, d-2\}$$

$$\begin{pmatrix} f_{(d-1)(d-1)} & f_{(d-1)d} \\ f_{d(d-1)} & f_{dd} \end{pmatrix} \in \Omega_0,$$

where Ω , Ω^* and Ω_0 are the $C(S^2)$ -modules defined as

$$\begin{split} \Omega = & \{ \begin{pmatrix} f \\ g \end{pmatrix} \mid f, g \in C((e_{+}^{2} \amalg e_{-}^{2})), (\begin{pmatrix} f \\ g \end{pmatrix} \mid_{e_{+}^{2}\amalg e_{-}^{2}})_{+}(z) \\ &= V(z)^{k} (\begin{pmatrix} f \\ g \end{pmatrix} \mid_{e_{+}^{2}\amalg e_{-}^{2}})_{-}(z) \quad \forall z \in S^{1} \} \\ \Omega^{*} = & \{ (f \quad g) \mid f, g \in C((e_{+}^{2} \amalg e_{-}^{2})), \quad (f \quad g)^{*} \in \Omega \} \\ \Omega_{0} = & \{ \begin{pmatrix} f_{1} \quad f_{2} \\ f_{3} \quad f_{4} \end{pmatrix} \mid f_{1}, f_{2}, f_{3}, f_{4} \in C((e_{+}^{2} \amalg e_{-}^{2})), (\begin{pmatrix} f_{1} \quad f_{2} \\ f_{3} \quad f_{4} \end{pmatrix} \mid_{e_{+}^{2}\amalg e_{-}^{2}})_{+}(z) \\ &= V(z)^{k} (\begin{pmatrix} f_{1} \quad f_{2} \\ f_{3} \quad f_{4} \end{pmatrix} \mid_{e_{+}^{2}\amalg e_{-}^{2}})_{-}(z)V(z)^{-k} \quad \forall z \in S^{1} \}. \end{split}$$

Let X be the complex vector space $\left(\oplus_{1}^{d-2}C(S^{2})\right)\oplus\Omega$. We will consider the elements of X as (d, 1) matrices where the first (d-2) entries are in $C(S^{2})$ and the last 2 entries are in Ω . If $x \in X$, denote by x^{*} the (1, d) matrix resulting from x by transposition and involution so that $x^{*} \in \left(\oplus_{1}^{d-2}C(S^{2})\right)\oplus$ Ω^{*} . The space X is a left $D_{d,k}$ -module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F = \left(g_{ij}\right)_{i,j=1}^{d} \in D_{d,k}$ and $x \in X$. If $g \in C(S^{2})$ and $x \in X$, then $x \cdot g$ defines a right $C(S^{2})$ -module structure on X. Now we define a $D_{d,k}$ -valued inner product $\langle \cdot, \cdot \rangle_{D_{d,k}}$ on X and a $C(S^{2})$ -valued inner product $\langle \cdot, \cdot \rangle_{C(S^{2})}$ on X by

$$\langle x, y \rangle_{D_{d,k}} = x \cdot y^*$$
 and $\langle x, y \rangle_{C(S^2)} = x^* \cdot y$

for all $x, y \in X$, we have the matrix multiplication on the right. By the same reasoning as the proof given in [3, Theorem 3], equipped with this structure, X becomes a $D_{d,k}$ - $C(S^2)$ -equivalence bimodule, and hence $D_{d,k}$ is strongly Morita equivalent to $C(S^2)$, as desired.

Krauss and Lawson [7, Proposition 2.13] proved that each *d*-homogeneous C^* -algebra over S^4 is isomorphic to one of the C^* -subalgebras $B_{d,k} = C_{g_k}(e_+^4 \amalg e_-^4, M_d(\mathbb{C})), k \in \mathbb{Z}$, given as follows: if $f \in B_{d,k}$, then the following condition is satisfied

$$f_{+}(z,w) = U(z,w)^{k} f_{-}(z,w) U(z,w)^{-k}$$

for all $(z, w) \in S^3 \subset \mathbb{C}^2$, where $U(z, w) \in PU(d) = \text{Inn}(M_d(\mathbb{C}))$ is defined as

$$U(z,w) = \begin{pmatrix} 1 & \dots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & 1 & 0 & 0 \\ 0 & \dots & 0 & \overline{z} & w \\ 0 & \dots & 0 & -\overline{w} & z \end{pmatrix}.$$

Each *d*-homogeneous C^* -algebra over $S^3 \times S^1$ corresponding to each element of $[S^3 \times S^1, BPU(d)]$ can be constructed.

LEMMA 2. Each d-homogeneous C^* -algebra over $S^3 \times S^1$ is isomorphic to one of the following C^* -subalgebras $A_{d,a}$, $k \in \mathbb{Z}$, of $C(S^3 \times [0,1], M_d(\mathbb{C}))$ given as follows: if $f \in A_{d,k}$, then the following condition is satisfied

$$f((z,w),1) = U(z,w)^k f((z,w),0) U(z,w)^{-k}$$

for all $(z, w) \in S^3$, where $U(z, w) \in PU(d)$ is the unitary given above.

Proof. By the Woodward theorem [9], $[S^3 \times S^1, BPU(d)]$ is embedded into $H^2(S^3 \times S^1, \mathbb{Z}_d) \oplus H^4(S^3 \times S^1, \mathbb{Z}) \cong \mathbb{Z}$. Since there is a map of degree 1 from $S^3 \times S^1$ to S^4 , the composite of the map of degree 1 and the map representing each element of $[S^4, BPU(d)]$ gives an element of $[S^3 \times S^1, BPU(d)]$. Hence each element of $[S^4, BPU(d)] \cong [S^3, PU(d)]$ representing a *d*-homogeneous C^* -algebra over S^4 induces an element of $[S^3, PU(d)] \subset [S^3 \times S^1, BPU(d)]$, and the *d*-homogeneous C^* -algebras $A_{d,k}$ over $S^3 \times S^1$ corresponding to the *d*-homogeneous C^* -algebras $B_{d,k}$ over S^4 are constructed in the statement, as desired. □

For a d-homogeneous C^* -algebra A over S^5 there is a matrix algebra $M_q(\mathbb{C})$ such that $A \otimes M_q(\mathbb{C})$ is isomorphic to $C(S^5) \otimes M_{dq}(\mathbb{C})$. Since there is a map of degree 1 from S^5 to $S^4 \times S^1$, there are d-homogeneous C^* -algebras over $S^4 \times S^1$ induced from d-homogeneous C^* -algebras over S^5 . Also there are d-homogeneous C^* -algebras over $S^4 \times S^1$ induced from d-homogeneous C^* -algebras over $S^4 \times S^1$ induced from d-homogeneous C^* -algebras over $S^4 \times S^1$ induced from d-homogeneous C^* -algebras over $S^4 \times S^1$ induced from d-homogeneous C^* -algebras over $S^4 \times S^1$ induced from a d-homogeneous C^* -algebra over S^5 with $M_q(\mathbb{C})$ has the trivial bundle structure for some integer q greater

than 1 since $[S^5, BPU(dq)] \cong \{0\}$ (see [7]). And by the Woodward theorem [9] $[S^2 \times S^1, BPU(d)]$ is embedded into $H^2(S^2 \times S^1, \mathbb{Z}_d) \oplus H^4(S^2 \times S^1, \mathbb{Z}) \cong H^2(S^2 \times S^1, \mathbb{Z}_d) \cong H^2(S^2, \mathbb{Z}_d) \cong \mathbb{Z}_d$. This implies that each *d*homogeneous C^* -algebra over $S^2 \times S^1$ is isomorphic to the tensor product of a *d*-homogeneous C^* -algebra over S^2 with $C(S^1)$. From now on, we assume that each *d*-homogeneous C^* -algebra over $S^4 \times S^1$ is isomorphic to the tensor product of a *d*-homogeneous C^* -algebra over $S^2 \times S^1$ is isomorphic to the tenproduct of a *d*-homogeneous C^* -algebra over $S^2 \times S^1$ is isomorphic to the tensor product of a *d*-homogeneous C^* -algebra over $S^2 \times S^1$ is isomorphic to the tensor

LEMMA 3. Let n and m be integers greater than 1. Each d-homogeneous C^* -algebra over $S^n \times S^m$ is isomorphic to a d-homogeneous C^* -algebra characterized by the unitary $U(Z)^a$ over S^{n-1} in a d-homogeneous C^* -algebra B_p over $e^n_+ \times S^m$ and $e^n_- \times S^m$, where $U(Z) \in PU(d)$ or PU(p) if $M_p(\mathbb{C})$ is factored out of B_p .

Proof. Since e_+^n and e_-^n are contractible, each *d*-homogeneous C^* -algebra over $e_+^n \times S^m$ and $e_-^n \times S^m$ is essentially induced by a *d*-homogeneous C^* algebra over S^m . Each *d*-homogeneous C^* -algebra over $S^n \times S^m$ is characterized by a projective unitary over the boundaries $S^{n-1} \times S^m$ of $e_+^n \times S^m$ and $e_-^n \times S^m$. But $\pi_1(S^n) = \{0\}$ and so the identification of the boundaries $S^m \hookrightarrow e_+^n \times S^m$ and $S^m \hookrightarrow e_-^n \times S^m$ does give the trivial bundle structure. Hence the *d*-homogeneous C^* -algebra over $S^n \times S^m$ is characterized by the unitary $U(Z)^a$, $a \in \mathbb{Z}$ or $a \in \mathbb{Z}_d$, over S^{n-1} in the *d*-homogeneous C^* -algebra over $e_+^n \times S^m$ and $e_-^n \times S^m$, where $U(Z) \in PU(d)$ or PU(p). \Box

All d-homogeneous C^* -algebras T^d over $\prod^{s_4+s_2} S^2 \times \prod^{s_3+s_1} S^1$ were constructed in [1, Theorem 2.5]. Combining Lemma 2 and Lemma 3 yields that each d-homogeneous C^* -algebra over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ can be constructed by canonically replacing some d-homogeneous C^* -subalgebras over S^2 and some d-homogeneous C^* -subalgebras over $S^1 \times S^1$ in T^d with d-homogeneous C^* -algebras over S^4 and d-homogeneous C^* algebras over $S^3 \times S^1$. If $s_3 + s_1$ is odd, then one can make the integer even

by tensoring with $C(S^1)$. So one can assume that $s_3 + s_1$ is even, and that s_1 is greater than or equals to s_3 and big enough if needed.

THEOREM 1. Each *d*-homogeneous C^* -algebra T^d over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ is isomorphic to one of the C^* -subalgebras $E_{(c)(r)}^{(a)(b)}$ of

$$C(\prod^{s_4} (e_+^4 \amalg e_-^4) \times \prod^{s_2} (e_+^2 \amalg e_-^2) \times \prod^{s_3} (S^3 \times [0,1]) \times \prod^{\frac{s_1-s_3}{2}} (S^1 \times [0,1]), M_d(\mathbb{C}))$$

consisting of those functions f that satisfy

$$(f|_{e_{+}^{4}\amalg e_{-}^{4}})_{+}(Z_{i}) = U(Z_{i})^{a_{i}}(f|_{e_{+}^{4}\amalg e_{-}^{4}})_{-}(Z_{i})U(Z_{i})^{-a_{i}}$$

$$(f|_{e_{+}^{2}\amalg e_{-}^{2}})_{+}(w_{i}) = U(w_{i})^{b_{i}}(f|_{e_{+}^{2}\amalg e_{-}^{2}})_{-}(w_{i})U(w_{i})^{-b_{i}}$$

$$(f|_{S^{3}\times[0,1]})(X_{i},1) = U(X_{i})^{c_{i}}(f|_{S^{3}\times[0,1]})(X_{i},0)U(X_{i})^{-c_{i}}$$

$$(f|_{S^{1}\times[0,1]})(y_{i},1) = U(y_{i})^{r_{i}}(f|_{S^{1}\times[0,1]})(y_{i},0)U(y_{i})^{-r_{i}}$$

for all $(Z_1, \dots, Z_{s_4}, w_1, \dots, w_{s_2}, X_1, \dots, X_{s_3}, y_1, \dots, y_{\frac{s_1-s_3}{2}}) \in \prod^{s_4} S^3 \times \prod^{s_2-s_3} S^1 \times \prod^{s_3} S^3 \times \prod^{\frac{s_1-s_3}{2}} S^1$, one of the tensor products of homogeneous C^* -algebras of the type above, or one of the C^* -algebras given by replacing $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$ in $E_{(c)(r)}^{(a)(b)}$ or the tensor products with suitable d'-homogeneous C^* -algebras in the same sense as above, when $M_{d'}(\mathbb{C})$ are factored out of $E_{(c)(r)}^{(a)(b)}$ or the tensor products, where $(a) = (a_1, \dots, a_{s_4}) \in \mathbb{Z}^{s_4}, (b) = (b_1, \dots, b_{s_2}) \in \mathbb{Z}^{s_2}, (c) = (c_1, \dots, c_{s_3}) \in \mathbb{Z}^{s_3}$, and $(r) = (r_1, \dots, r_{\frac{s_1-s_3}{2}}) \in \mathbb{Z}^{\frac{s_1-s_3}{2}}$ and $U(Z_i), U(w_i), U(X_i)$ and $U(y_i) \in PU(d)$ are as defined before.

Proof. By Lemma 2, each d-homogeneous C^* -algebra over $S^3 \times S^1$ corresponds to a d-homogeneous C^* -algebra over S^4 . By Lemma 3, each d-homogeneous C^* -algebra over the product space of two even dimensional spheres can be constructed. Combining Lemma 2 and Lemma 3 yields that replacing S^4 and S^3 with S^2 and S^1 does not give any change in the relation, associated with bundle structure, among the factors of $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$, and among the factors of $\prod^{s_4+s_2} S^2 \times \prod^{s_3+s_1} S^1$. Hence each d-homogeneous C^* -algebra over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$

can be given by [1, Theorem 2.5], which is exactly the same as the statement for the case $s_4 = 0$ and $s_3 = 0$.

For a compact CW-complex M, the Čech cohomology group $H^3(M,\mathbb{Z})$ classifies the tensor products of d-homogeneous C^* -algebras over M with the C^* -algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable Hilbert space \mathcal{H} (see [6]). The Čech cohomology group $H^3(M,\mathbb{Z})$ is isomorphic to the singular cohomology group $H^3(M,\mathbb{Z})$, when M is a triangularizable CW-complex (see [2, Theorem 15.8]).

THEOREM 2. Each d-homogeneous C^* -algebra over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ is stably isomorphic to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$.

Proof. Each non-trivial element in the cohomology group $H^3(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1, \mathbb{Z})$ is given by a non-trivial element in $H^3((S^1)^3, \mathbb{Z}), H^3(S^2 \times S^1, \mathbb{Z})$, or $H^3(S^3, \mathbb{Z})$ if there exist such factors.

 $H^3(S^2 \times S^1, \mathbb{Z}) \cong \mathbb{Z}$. By the Woodward theorem [9], $[S^2 \times S^1, BPU(d)]$ is embedded into $H^2(S^2 \times S^1, \mathbb{Z}_d) \oplus H^4(S^2 \times S^1, \mathbb{Z}) \cong H^2(S^2 \times S^1, \mathbb{Z}_d) \cong$ $H^2(S^2, \mathbb{Z}_d) \cong \mathbb{Z}_d$. So each *d*-homogeneous C^* -algebra over $S^2 \times S^1$ is isomorphic to the tensor product of a *d*-homogeneous C^* -algebra over S^2 with $C(S^1)$, which is stably isomorphic to $C(S^2) \otimes C(S^1) \otimes M_d(\mathbb{C})$, since $H^3(S^2, \mathbb{Z}) = \{0\}$. Thus each *d*-homogeneous C^* -algebra over $S^2 \times S^1$ is stably isomorphic to $C(S^2 \times S^1) \otimes M_d(\mathbb{C})$.

Similarly, one can obtain the same result for the other cases.

Hence each *d*-homogeneous C^* -algebra over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ is stably isomorphic to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$. \Box

For each $k \in \mathbb{Z}$, let

$$U(z,w)^{k} = \begin{pmatrix} 1 & \dots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & 1 & 0 & 0 \\ 0 & \dots & 0 & \overline{z} & w \\ 0 & \dots & 0 & -\overline{w} & z \end{pmatrix}^{k} = \begin{pmatrix} 1 & \dots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & 1 & 0 & 0 \\ 0 & \dots & 0 & \overline{g_{k}(z,w)} & h_{k}(z,w) \\ 0 & \dots & 0 & -\overline{h_{k}(z,w)} & g_{k}(z,w) \end{pmatrix}$$

 $\text{for all } (z,w) \in S^3 \subset \mathbb{C}^2. \text{ Let } V(z,w)^k = \begin{pmatrix} \overline{g_k(z,w)} & h_k(z,w) \\ -\overline{h_k(z,w)} & g_k(z,w) \end{pmatrix}.$

LEMMA 4. Each d-homogeneous C^* -algebra $B_{d,k}$ over S^4 is strongly Morita equivalent to $C(S^4)$.

Proof. The *d*-homogeneous C^* -algebra $B_{d,k}$ over S^4 can be realized as the C^* -algebra of matrices $(f_{ij})_{i,j=1}^d$ of functions f_{ij} with

$$f_{ij} \in C(S^4) \text{ if } i, j \in \{1, \cdots, d-2\}$$

$$\begin{pmatrix} f_{(d-1)i} \\ f_{di} \end{pmatrix} \in \Omega \quad \& \quad \left(f_{i(d-1)} \quad f_{id}\right) \in \Omega^* \text{ if } i \in \{1, \cdots, d-2\}$$

$$\begin{pmatrix} f_{(d-1)(d-1)} & f_{(d-1)d} \\ f_{d(d-1)} & f_{dd} \end{pmatrix} \in \Omega_0,$$

where Ω , Ω^* and Ω_0 are the $C(S^4)$ -modules defined as

$$\begin{split} \Omega = & \{ \begin{pmatrix} f \\ g \end{pmatrix} \mid f, g \in C((e_{+}^{4} \amalg e_{-}^{4})), \\ & (\begin{pmatrix} f \\ g \end{pmatrix})|_{e_{+}^{4}\amalg e_{-}^{4}})_{+}(z, w) = V(z, w)^{k} (\begin{pmatrix} f \\ g \end{pmatrix})|_{e_{+}^{4}\amalg e_{-}^{4}})_{-}(z, w) \quad \forall (z, w) \in S^{3} \} \\ \Omega^{*} = & \{ (f \ g) \mid f, g \in C((e_{+}^{4} \amalg e_{-}^{4})), \quad (f \ g)^{*} \in \Omega \} \\ \Omega_{0} = & \{ \begin{pmatrix} f_{1} \ f_{2} \\ f_{3} \ f_{4} \end{pmatrix} \mid f_{1}, f_{2}, f_{3}, f_{4} \in C((e_{+}^{4} \amalg e_{-}^{4})), (\begin{pmatrix} f_{1} \ f_{2} \\ f_{3} \ f_{4} \end{pmatrix} \mid_{e_{+}^{4}\amalg e_{-}^{4}})_{+}(z, w) \\ & = V(z, w)^{k} (\begin{pmatrix} f_{1} \ f_{2} \\ f_{3} \ f_{4} \end{pmatrix} \mid_{e_{+}^{4}\amalg e_{-}^{4}})_{-}(z, w)V(z, w)^{-k} \quad \forall (z, w) \in S^{3} \}. \end{split}$$

Let X be the complex vector space $(\bigoplus_{1}^{d-2}C(S^4)) \oplus \Omega$. We will consider the elements of X as (d, 1) matrices where the first (d-2) entries are in $C(S^4)$ and the last 2 entries are in Ω . If $x \in X$, denote by x^* the (1, d) matrix resulting from x by transposition and involution so that $x^* \in (\bigoplus_{1}^{d-2}C(S^4)) \oplus$ Ω^* . The space X is a left $B_{d,k}$ -module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F = (g_{ij})_{i,j=1}^d \in B_{d,k}$ and $x \in X$. If $g \in C(S^4)$ and $x \in X$, then $x \cdot g$ defines a right $C(S^4)$ -module structure on X. Now we define a $B_{d,k}$ -valued inner product $\langle \cdot, \cdot \rangle_{B_{d,k}}$ on X and a $C(S^4)$ -valued inner product $\langle \cdot, \cdot \rangle_{C(S^4)}$ on X by

$$\langle x, y \rangle_{B_{d,k}} = x \cdot y^*$$
 and $\langle x, y \rangle_{C(S^4)} = x^* \cdot y$

for all $x, y \in X$, we have the matrix multiplication on the right. By the same reasoning as the proof given in [3, Theorem 3], equipped with this structure, X becomes a $B_{d,k}$ - $C(S^4)$ -equivalence bimodule, and hence $B_{d,k}$ is strongly Morita equivalent to $C(S^4)$, as desired.

THEOREM 3. Each *d*-homogeneous C^* -algebra T^d over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ is strongly Morita equivalent to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$.

Proof. Let $S = \prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$, and $M = \prod^{s_4} (e_+^4 \amalg e_-^4) \times \prod^{s_2} (e_+^2 \amalg e_-^2) \times \prod^{s_3} (S^3 \times [0,1]) \times \prod^{\frac{s_1-s_3}{2}} (S^1 \times [0,1])$. The *d*-homogeneous C^* -algebra $E_{(c)(r)}^{(a)(b)}$ over S can be realized as the C^* -algebra of matrices $(f_{ij})_{i,j=1}^d$ of functions f_{ij} with

$$\begin{aligned} f_{ij} \in C(S) \text{ if } i, j \in \{1, \cdots, d-2\} \\ \begin{pmatrix} f_{(d-1)i} \\ f_{di} \end{pmatrix} \in \Gamma \quad \& \quad \left(f_{i(d-1)} \quad f_{id}\right) \in \Gamma^* \text{ if } i \in \{1, \cdots, d-2\} \\ \begin{pmatrix} f_{(d-1)(d-1)} & f_{(d-1)d} \\ f_{d(d-1)} & f_{dd} \end{pmatrix} \in \Gamma_0, \end{aligned}$$

where Γ , Γ^* and Γ_0 are the C(S)-modules defined as

$$\begin{split} \Gamma &= \{ \begin{pmatrix} f \\ g \end{pmatrix} \mid f, g \in C(M), \quad \forall i \\ &(\begin{pmatrix} f \\ g \end{pmatrix})|_{e_{+}^{4} \amalg e_{-}^{4}})_{+}(Z_{i}) = V(Z_{i})^{a_{i}} \begin{pmatrix} f \\ g \end{pmatrix}|_{e_{+}^{4} \amalg e_{-}^{4}})_{-}(Z_{i}), \quad \forall Z_{i} \in S^{3} \\ &(\begin{pmatrix} f \\ g \end{pmatrix})|_{e_{+}^{2} \amalg e_{-}^{2}})_{+}(w_{i}) = V(w_{i})^{b_{i}} \begin{pmatrix} f \\ g \end{pmatrix}|_{e_{+}^{2} \amalg e_{-}^{2}})_{-}(w_{i}), \quad \forall w_{i} \in S^{1} \\ &(\begin{pmatrix} f \\ g \end{pmatrix}|_{S^{3} \times [0,1]})(X_{i},1) = V(X_{i})^{c_{i}} \begin{pmatrix} f \\ g \end{pmatrix}|_{S^{3} \times [0,1]})(X_{i},0), \quad \forall X_{i} \in S^{3} \\ &(\begin{pmatrix} f \\ g \end{pmatrix}|_{S^{1} \times [0,1]})(y_{i},1) = V(y_{i})^{r_{i}} \begin{pmatrix} f \\ g \end{pmatrix}|_{S^{1} \times [0,1]})(y_{i},0), \quad \forall y_{i} \in S^{1} \} \\ &\Gamma^{*} = \{ (f \quad g) \mid f, g \in C(M), \quad (f \quad g)^{*} \in \Gamma \} \end{split}$$

$$\begin{split} \Gamma_{0} &= \{ \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid f_{1}, f_{2}, f_{3}, f_{4} \in C(M), \quad \forall i \\ &(\begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{e_{+}^{4} \amalg e_{-}^{4}})_{+}(Z_{i}) \\ &= V(Z_{i})^{a_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{e_{+}^{2} \amalg e_{-}^{2}})_{+}(w_{i}) \\ &= V(w_{i})^{b_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{e_{+}^{2} \amalg e_{-}^{2}})_{+}(w_{i}) \\ &= V(w_{i})^{b_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{e_{+}^{2} \amalg e_{-}^{2}})_{-}(w_{i})V(w_{i})^{-b_{i}}, \forall w_{i} \in S^{1} \\ &(\begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{3} \times [0,1]})(X_{i},1) \\ &= V(X_{i})^{c_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{3} \times [0,1]})(X_{i},0) \\ &= V(X_{i})^{c_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},1) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times [0,1]})(y_{i},0) \\ &= V(y_{i})^{r_{i}} \begin{pmatrix} f_{1} & f_{2} \\ f_{3} & f_{4} \end{pmatrix} \mid_{S^{1} \times$$

Let Y be the complex vector space $\left(\oplus_{1}^{d-2}C(S)\right)\oplus\Gamma$. We will consider the elements of Y as (d, 1) matrices where the first (d-2) entries are in C(S) and the last 2 entries are in Γ . If $y \in Y$, denote by y^* the (1, d) matrix resulting from y by transposition and involution so that $y^* \in \left(\oplus_{1}^{d-2}C(S)\right)\oplus\Gamma^*$. The space Y is a left $E_{(c)(r)}^{(a)(b)}$ -module if module multiplication is defined by matrix multiplication $F \cdot y$, where $F = \left(g_{ij}\right)_{i,j=1}^d \in E_{(c)(r)}^{(a)(b)}$ and $y \in Y$. If $g \in C(S)$ and $y \in Y$, then $y \cdot g$ defines a right C(S)-module structure on Y. Now we define an $E_{(c)(r)}^{(a)(b)}$ -valued inner product $\langle \cdot, \cdot \rangle_{E_{(c)(r)}^{(a)(b)}}$ on Y and a C(S)-valued inner product $\langle \cdot, \cdot \rangle_{C(S)}$ on Y by

$$\langle x, y \rangle_{E^{(a)(b)}_{(c)(r)}} = x \cdot y^* \text{ and } \langle x, y \rangle_{C(S)} = x^* \cdot y$$

for all $x, y \in Y$, we have the matrix multiplication on the right. By the same reasoning as the proof given in [1, Theorem 3.3], equipped with this structure, Y becomes an $E_{(c)(r)}^{(a)(b)} \cdot C(S)$ -equivalence bimodule, and hence $E_{(c)(r)}^{(a)(b)}$ is strongly Morita equivalent to C(S). By a finite step of the above process, one can obtain the result.

Therefore, each C^* -algebra T^d over $\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1$ is strongly Morita equivalent to $C(\prod^{s_4} S^4 \times \prod^{s_2} S^2 \times \prod^{s_3} S^3 \times \prod^{s_1} S^1)$. \Box

References

- 1. D. Boo, P. Kang and C. Park, The sectional C*-algebras over a torus with fibres a non-commutative torus, Far East J. Math. Sci. 1 (1999), 561–579.
- 2. R. Bott and L.W. Tu, *Differential Forms in Algebraic Topology*, Springer-Verlag, New York, Heidelberg and Berlin, 1982.
- M. Brabanter, The classification of rational rotation C*-algebras, Arch. Math. 43 (1984), 79–83.
- L. Brown, P. Green and M. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebras, Pacific J. Math. **71** (1977), 349–363.
- S. Disney and I. Raeburn, Homogeneous C^{*}-algebras whose spectra are tori, J. Austral. Math. Soc. (Ser. A) 38 (1985), 9–39.
- 6. J. Dixmier, C*-Algebras, North-Holland, Amsterdam, New York and Oxford, 1977.
- F. Krauss and T.C. Lawson, Examples of homogeneous C^{*}-algebras, Memoirs A.M.S. 148 (1974), 153–164.
- M. Rieffel, Morita equivalence for operator algebras, Operator Algebras and Applications (R. Kadison, ed.), Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 285–298.
- L. Woodward, The classification of principal PU(k)-bundles over a 4-complex, J. London Math. Soc. 25 (1982), 513–524.

*

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305-764, KOREA

E-mail: cgpark@cnu.ac.kr