# MORITA EQUIVALENCE FOR HOMOGENEOUS $C^{*}$-ALGEBRAS OVER LOWER DIMENSIONAL SPHERES 

Chun-Gil Park*

> AbStract. All $d$-homogeneous $C^{*}$-algebras $T^{d}$ over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times$ $\Pi^{s_{3}} S^{3} \times \Pi^{s_{1}} S^{1}$ are constructed. It is shown that $T^{d}$ are strongly Morita equivalent to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$.

## 1. Introduction

An important problem, in the bundle theory, is to compute the set [ $M, B P U(d)]$ of homotopy classes of continuous maps of a compact $C W$ complex $M$ into the classifying space $B P U(d)$ of the Lie group $P U(d)$. The set $[M, B P U(d)]$ is in bijective correspondence with the set of equivalence classes of principal $P U(d)$-bundles over $M$, which is in bijective correspondence with the set of $d$-homogeneous $C^{*}$-algebras over $M$ (see [5, 7]).

In [4], the authors showed that two separable $C^{*}$-algebras $A$ and $B$ are stably isomorphic if and only if they are strongly Morita equivalent, i.e., there exists an $A$ - $B$-equivalence bimodule defined in [8]. All $d$-homogeneous $C^{*}$-algebras $T^{d}$ over $\prod^{s_{2}} S^{2} \times \prod^{s_{1}} S^{1}$ were constructed in [1, Theorem 2.5], and it was shown in [1, Theorem 3.3] that $T^{d}$ are strongly Morita equivalent to $C\left(\prod^{s_{2}} S^{2} \times \prod^{s_{1}} S^{1}\right)$.

In this paper, all $d$-homogeneous $C^{*}$-algebras $T^{d}$ over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times$ $\prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$ are constructed. It is shown that $T^{d}$ are stably isomorphic to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$. Thus $T^{d}$ are strongly Morita equivalent to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$. By modifying the construction given in [1, Theorem 3.3], we are going to construct a $T^{d}$ $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$-equivalence bimodule.

Received by the editors on March 20, 2006.
2000 Mathematics Subject Classifications: Primary 46L05, 55R10.
Key words and phrases: equivalence bimodule.

## 2. Morita equivalence for homogeneous $C^{*}$-algebras over lower dimensional spheres

Krauss and Lawson [7, Proposition 2.10] proved that each $d$-homogeneous $C^{*}$-algebra over $S^{2}$ is isomorphic to one of the $C^{*}$-subalgebras $D_{d, k}=$ $C_{g_{k}}\left(e_{+}^{2} \amalg e_{-}^{2}, M_{d}(\mathbb{C})\right), k \in \mathbb{Z}_{d}$, given as follows: if $f \in D_{d, k}$, then the following condition is satisfied

$$
f_{+}(z)=U(z)^{k} f_{-}(z) U(z)^{-k}
$$

for all $z \in S^{1} \subset \mathbb{C}$, where $U(z) \in P U(d)=\operatorname{Inn}\left(M_{d}(\mathbb{C})\right)$ is defined as

$$
U(z)=\left(\begin{array}{cccc}
1 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 1 & 0 \\
0 & \ldots & 0 & z
\end{array}\right)
$$

and $e_{+}^{n}$ (resp. $e_{-}^{n}$ ) is the $n$-dimensional northern (resp. southern) hemisphere.

In $\left[3\right.$, Theorem 3], an $A_{\frac{k}{d}} C\left(\mathbb{T}^{2}\right)$-equivalence bimodule was constructed for $A_{\frac{k}{d}}$ a rational rotation algebra, and in [1, Theorem 3.3], by modifying the construction given in [3, Theorem 3], a $D_{d, k}-C\left(S^{2}\right)$-equivalence bimodule was constructed. But using a slightly different trick, we are going to construct a $D_{d, k}-C\left(S^{2}\right)$-equivalence bimodule.

Lemma 1. Each d-homogeneous $C^{*}$-algebra $D_{d, k}$ over $S^{2}$ is strongly Morita equivalent to $C\left(S^{2}\right)$.

Proof. Let $V(z)^{k}=\left(\begin{array}{cc}1 & 0 \\ 0 & z^{k}\end{array}\right)$. The $d$-homogeneous $C^{*}$-algebra $D_{d, k}$ over $S^{2}$ can be realized as the $C^{*}$-algebra of matrices $\left(f_{i j}\right)_{i, j=1}^{d}$ of functions $f_{i j}$ with

$$
\begin{aligned}
f_{i j} & \in C\left(S^{2}\right) \text { if } i, j \in\{1, \cdots, d-2\} \\
\binom{f_{(d-1) i}}{f_{d i}} & \in \Omega \quad \& \quad\left(\begin{array}{ll}
f_{i(d-1)} & f_{i d}
\end{array}\right) \in \Omega^{*} \text { if } i \in\{1, \cdots, d-2\} \\
& \left(\begin{array}{cc}
f_{(d-1)(d-1)} & f_{(d-1) d} \\
f_{d(d-1)} & f_{d d}
\end{array}\right) \in \Omega_{0}
\end{aligned}
$$

where $\Omega, \Omega^{*}$ and $\Omega_{0}$ are the $C\left(S^{2}\right)$-modules defined as

$$
\begin{aligned}
& \Omega=\left\{\left.\binom{f}{g} \right\rvert\, f, g \in C\left(\left(e_{+}^{2} \amalg e_{-}^{2}\right)\right),\left(\left.\binom{f}{g} \right\rvert\, e_{+}^{2} \amalg e_{-}^{2}\right)_{+}(z)\right. \\
& \left.=V(z)^{k}\left(\left.\binom{f}{g}\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{-}(z) \quad \forall z \in S^{1}\right\} \\
& \Omega^{*}=\left\{\left.\left(\begin{array}{ll}
f & g
\end{array}\right) \right\rvert\, f, g \in C\left(\left(e_{+}^{2} \amalg e_{-}^{2}\right)\right), \quad\left(\begin{array}{ll}
f & g
\end{array}\right)^{*} \in \Omega\right\} \\
& \Omega_{0}=\left\{\left.\left(\begin{array}{cc}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right) \right\rvert\, f_{1}, f_{2}, f_{3}, f_{4} \in C\left(\left(e_{+}^{2} \amalg e_{-}^{2}\right)\right),\left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{+}(z)\right. \\
& \left.=V(z)^{k}\left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{-}(z) V(z)^{-k} \quad \forall z \in S^{1}\right\} .
\end{aligned}
$$

Let $X$ be the complex vector space $\left(\oplus_{1}^{d-2} C\left(S^{2}\right)\right) \oplus \Omega$. We will consider the elements of $X$ as $(d, 1)$ matrices where the first $(d-2)$ entries are in $C\left(S^{2}\right)$ and the last 2 entries are in $\Omega$. If $x \in X$, denote by $x^{*}$ the $(1, d)$ matrix resulting from $x$ by transposition and involution so that $x^{*} \in\left(\oplus_{1}^{d-2} C\left(S^{2}\right)\right) \oplus$ $\Omega^{*}$. The space $X$ is a left $D_{d, k}$-module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F=\left(g_{i j}\right)_{i, j=1}^{d} \in D_{d, k}$ and $x \in X$. If $g \in C\left(S^{2}\right)$ and $x \in X$, then $x \cdot g$ defines a right $C\left(S^{2}\right)$-module structure on $X$. Now we define a $D_{d, k}$-valued inner product $\langle\cdot, \cdot\rangle_{D_{d, k}}$ on $X$ and a $C\left(S^{2}\right)$-valued inner product $\langle\cdot, \cdot\rangle_{C\left(S^{2}\right)}$ on $X$ by

$$
\langle x, y\rangle_{D_{d, k}}=x \cdot y^{*} \quad \text { and } \quad\langle x, y\rangle_{C\left(S^{2}\right)}=x^{*} \cdot y
$$

for all $x, y \in X$, we have the matrix multiplication on the right. By the same reasoning as the proof given in [3, Theorem 3], equipped with this structure, $X$ becomes a $D_{d, k}-C\left(S^{2}\right)$-equivalence bimodule, and hence $D_{d, k}$ is strongly Morita equivalent to $C\left(S^{2}\right)$, as desired.

Krauss and Lawson [7, Proposition 2.13] proved that each $d$-homogeneous $C^{*}$-algebra over $S^{4}$ is isomorphic to one of the $C^{*}$-subalgebras $B_{d, k}=$ $C_{g_{k}}\left(e_{+}^{4} \amalg e_{-}^{4}, M_{d}(\mathbb{C})\right), k \in \mathbb{Z}$, given as follows: if $f \in B_{d, k}$, then the following condition is satisfied

$$
f_{+}(z, w)=U(z, w)^{k} f_{-}(z, w) U(z, w)^{-k}
$$

for all $(z, w) \in S^{3} \subset \mathbb{C}^{2}$, where $U(z, w) \in P U(d)=\operatorname{Inn}\left(M_{d}(\mathbb{C})\right)$ is defined as

$$
U(z, w)=\left(\begin{array}{ccccc}
1 & \ldots & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 1 & 0 & 0 \\
0 & \ldots & 0 & \bar{z} & w \\
0 & \ldots & 0 & -\bar{w} & z
\end{array}\right)
$$

Each $d$-homogeneous $C^{*}$-algebra over $S^{3} \times S^{1}$ corresponding to each element of $\left[S^{3} \times S^{1}, B P U(d)\right]$ can be constructed.

Lemma 2. Each $d$-homogeneous $C^{*}$-algebra over $S^{3} \times S^{1}$ is isomorphic to one of the following $C^{*}$-subalgebras $A_{d, a}, k \in \mathbb{Z}$, of $C\left(S^{3} \times[0,1], M_{d}(\mathbb{C})\right)$ given as follows: if $f \in A_{d, k}$, then the following condition is satisfied

$$
f((z, w), 1)=U(z, w)^{k} f((z, w), 0) U(z, w)^{-k}
$$

for all $(z, w) \in S^{3}$, where $U(z, w) \in P U(d)$ is the unitary given above.
Proof. By the Woodward theorem [9], $\left[S^{3} \times S^{1}, B P U(d)\right]$ is embedded into $H^{2}\left(S^{3} \times S^{1}, \mathbb{Z}_{d}\right) \oplus H^{4}\left(S^{3} \times S^{1}, \mathbb{Z}\right) \cong \mathbb{Z}$. Since there is a map of degree 1 from $S^{3} \times S^{1}$ to $S^{4}$, the composite of the map of degree 1 and the map representing each element of $\left[S^{4}, B P U(d)\right]$ gives an element of $\left[S^{3} \times S^{1}, B P U(d)\right]$. Hence each element of $\left[S^{4}, B P U(d)\right] \cong\left[S^{3}, P U(d)\right]$ representing a $d$-homogeneous $C^{*}$-algebra over $S^{4}$ induces an element of $\left[S^{3}, P U(d)\right] \subset\left[S^{3} \times S^{1}, B P U(d)\right]$, and the $d$-homogeneous $C^{*}$-algebras $A_{d, k}$ over $S^{3} \times S^{1}$ corresponding to the $d$-homogeneous $C^{*}$-algebras $B_{d, k}$ over $S^{4}$ are constructed in the statement, as desired.

For a $d$-homogeneous $C^{*}$-algebra $A$ over $S^{5}$ there is a matrix algebra $M_{q}(\mathbb{C})$ such that $A \otimes M_{q}(\mathbb{C})$ is isomorphic to $C\left(S^{5}\right) \otimes M_{d q}(\mathbb{C})$. Since there is a map of degree 1 from $S^{5}$ to $S^{4} \times S^{1}$, there are $d$-homogeneous $C^{*}$-algebras over $S^{4} \times S^{1}$ induced from $d$-homogeneous $C^{*}$-algebras over $S^{5}$. Also there are $d$-homogeneous $C^{*}$-algebras over $S^{4} \times S^{1}$ induced from $d$-homogeneous $C^{*}$-algebras over $S^{4}$. But the tensor product of each $d$-homogeneous $C^{*}$ algebra over $S^{4} \times S^{1}$ induced from a $d$-homogeneous $C^{*}$-algebra over $S^{5}$ with $M_{q}(\mathbb{C})$ has the trivial bundle structure for some integer $q$ greater
than 1 since $\left[S^{5}, B P U(d q)\right] \cong\{0\}$ (see [7]). And by the Woodward theorem [9] $\left[S^{2} \times S^{1}, \operatorname{BPU}(d)\right]$ is embedded into $H^{2}\left(S^{2} \times S^{1}, \mathbb{Z}_{d}\right) \oplus H^{4}\left(S^{2} \times\right.$ $\left.S^{1}, \mathbb{Z}\right) \cong H^{2}\left(S^{2} \times S^{1}, \mathbb{Z}_{d}\right) \cong H^{2}\left(S^{2}, \mathbb{Z}_{d}\right) \cong \mathbb{Z}_{d}$. This implies that each $d$ homogeneous $C^{*}$-algebra over $S^{2} \times S^{1}$ is isomorphic to the tensor product of a $d$-homogeneous $C^{*}$-algebra over $S^{2}$ with $C\left(S^{1}\right)$. From now on, we assume that each $d$-homogeneous $C^{*}$-algebra over $S^{4} \times S^{1}$ is isomorphic to the tensor product of a $d$-homogeneous $C^{*}$-algebra over $S^{4}$ with $C\left(S^{1}\right)$, and that each $d$-homogeneous $C^{*}$-algebra over $S^{2} \times S^{1}$ is isomorphic to the tensor product of a $d$-homogeneous $C^{*}$-algebra over $S^{2}$ with $C\left(S^{1}\right)$.

Lemma 3. Let $n$ and $m$ be integers greater than 1. Each d-homogeneous $C^{*}$-algebra over $S^{n} \times S^{m}$ is isomorphic to a $d$-homogeneous $C^{*}$-algebra characterized by the unitary $U(Z)^{a}$ over $S^{n-1}$ in a $d$-homogeneous $C^{*}$-algebra $B_{p}$ over $e_{+}^{n} \times S^{m}$ and $e_{-}^{n} \times S^{m}$, where $U(Z) \in P U(d)$ or $P U(p)$ if $M_{p}(\mathbb{C})$ is factored out of $B_{p}$.

Proof. Since $e_{+}^{n}$ and $e_{-}^{n}$ are contractible, each $d$-homogeneous $C^{*}$-algebra over $e_{+}^{n} \times S^{m}$ and $e_{-}^{n} \times S^{m}$ is essentially induced by a $d$-homogeneous $C^{*}-$ algebra over $S^{m}$. Each $d$-homogeneous $C^{*}$-algebra over $S^{n} \times S^{m}$ is characterized by a projective unitary over the boundaries $S^{n-1} \times S^{m}$ of $e_{+}^{n} \times S^{m}$ and $e_{-}^{n} \times S^{m}$. But $\pi_{1}\left(S^{n}\right)=\{0\}$ and so the identification of the boundaries $S^{m} \hookrightarrow e_{+}^{n} \times S^{m}$ and $S^{m} \hookrightarrow e_{-}^{n} \times S^{m}$ does give the trivial bundle structure. Hence the $d$-homogeneous $C^{*}$-algebra over $S^{n} \times S^{m}$ is characterized by the unitary $U(Z)^{a}, a \in \mathbb{Z}$ or $a \in \mathbb{Z}_{d}$, over $S^{n-1}$ in the $d$-homogeneous $C^{*}$-algebra over $e_{+}^{n} \times S^{m}$ and $e_{-}^{n} \times S^{m}$, where $U(Z) \in P U(d)$ or $P U(p)$.

All $d$-homogeneous $C^{*}$-algebras $T^{d}$ over $\prod^{s_{4}+s_{2}} S^{2} \times \prod^{s_{3}+s_{1}} S^{1}$ were constructed in [1, Theorem 2.5]. Combining Lemma 2 and Lemma 3 yields that each $d$-homogeneous $C^{*}$-algebra over $\Pi^{s_{4}} S^{4} \times \Pi^{s_{2}} S^{2} \times \Pi^{s_{3}} S^{3} \times$ $\prod^{s_{1}} S^{1}$ can be constructed by canonically replacing some $d$-homogeneous $C^{*}$-subalgebras over $S^{2}$ and some $d$-homogeneous $C^{*}$-subalgebras over $S^{1} \times$ $S^{1}$ in $T^{d}$ with $d$-homogeneous $C^{*}$-algebras over $S^{4}$ and $d$-homogeneous $C^{*}$ algebras over $S^{3} \times S^{1}$. If $s_{3}+s_{1}$ is odd, then one can make the integer even
by tensoring with $C\left(S^{1}\right)$. So one can assume that $s_{3}+s_{1}$ is even, and that $s_{1}$ is greater than or equals to $s_{3}$ and big enough if needed.

Theorem 1. Each d-homogeneous $C^{*}$-algebra $T^{d}$ over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times$ $\prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$ is isomorphic to one of the $C^{*}$-subalgebras $E_{(c)(r)}^{(a)(b)}$ of
$C\left(\prod^{s_{4}}\left(e_{+}^{4} \amalg e_{-}^{4}\right) \times \prod^{s_{2}}\left(e_{+}^{2} \amalg e_{-}^{2}\right) \times \prod^{s_{3}}\left(S^{3} \times[0,1]\right) \times \prod^{\frac{s_{1}-s_{3}}{2}}\left(S^{1} \times[0,1]\right), M_{d}(\mathbb{C})\right)$
consisting of those functions $f$ that satisfy

$$
\begin{aligned}
\left(\left.f\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{+}\left(Z_{i}\right) & =U\left(Z_{i}\right)^{a_{i}}\left(\left.f\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{-}\left(Z_{i}\right) U\left(Z_{i}\right)^{-a_{i}} \\
\left(\left.f\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{+}\left(w_{i}\right) & =U\left(w_{i}\right)^{b_{i}}\left(\left.f\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)-\left(w_{i}\right) U\left(w_{i}\right)^{-b_{i}} \\
\left(\left.f\right|_{S^{3} \times[0,1]}\right)\left(X_{i}, 1\right) & =U\left(X_{i}\right)^{c_{i}}\left(\left.f\right|_{S^{3} \times[0,1]}\right)\left(X_{i}, 0\right) U\left(X_{i}\right)^{-c_{i}} \\
\left(\left.f\right|_{S^{1} \times[0,1]}\right)\left(y_{i}, 1\right) & =U\left(y_{i}\right)^{r_{i}}\left(\left.f\right|_{S^{1} \times[0,1]}\right)\left(y_{i}, 0\right) U\left(y_{i}\right)^{-r_{i}}
\end{aligned}
$$

for all $\left(Z_{1}, \cdots, Z_{s_{4}}, w_{1}, \cdots, w_{s_{2}}, X_{1}, \cdots, X_{s_{3}}, y_{1}, \cdots, y_{\frac{s_{1}-s_{3}}{2}}\right) \in \Pi^{s_{4}} S^{3} \times$ $\Pi^{s_{2}} S^{1} \times \Pi^{s_{3}} S^{3} \times \Pi^{\frac{s_{1}-s_{3}}{2}} S^{1}$, one of the tensor products of homogeneous $C^{*}$-algebras of the type above, or one of the $C^{*}$-algebras given by replacing $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$ in $E_{(c)(r)}^{(a)(b)}$ or the tensor products with suitable $d^{\prime}$-homogeneous $C^{*}$-algebras in the same sense as above, when $M_{d^{\prime}}(\mathbb{C})$ are factored out of $E_{(c)(r)}^{(a)(b)}$ or the tensor products, where $(a)=\left(a_{1}, \cdots, a_{s_{4}}\right) \in \mathbb{Z}^{s_{4}},(b)=\left(b_{1}, \cdots, b_{s_{2}}\right) \in \mathbb{Z}^{s_{2}},(c)=\left(c_{1}, \cdots, c_{s_{3}}\right) \in$ $\mathbb{Z}^{s_{3}}$, and $(r)=\left(r_{1}, \cdots, r_{\frac{s_{1}-s_{3}}{2}}\right) \in \mathbb{Z}^{\frac{s_{1}-s_{3}}{2}}$ and $U\left(Z_{i}\right), U\left(w_{i}\right), U\left(X_{i}\right)$ and $U\left(y_{i}\right) \in P U(d)$ are as defined before.

Proof. By Lemma 2, each $d$-homogeneous $C^{*}$-algebra over $S^{3} \times S^{1}$ corresponds to a $d$-homogeneous $C^{*}$-algebra over $S^{4}$. By Lemma 3, each $d$ homogeneous $C^{*}$-algebra over the product space of two even dimensional spheres can be constructed. Combining Lemma 2 and Lemma 3 yields that replacing $S^{4}$ and $S^{3}$ with $S^{2}$ and $S^{1}$ does not give any change in the relation, associated with bundle structure, among the factors of $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times$ $\prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$, and among the factors of $\prod^{s_{4}+s_{2}} S^{2} \times \prod^{s_{3}+s_{1}} S^{1}$. Hence each $d$-homogeneous $C^{*}$-algebra over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$
can be given by [1, Theorem 2.5], which is exactly the same as the statement for the case $s_{4}=0$ and $s_{3}=0$.

For a compact $C W$-complex $M$, the Čech cohomology group $H^{3}(M, \mathbb{Z})$ classifies the tensor products of $d$-homogeneous $C^{*}$-algebras over $M$ with the $C^{*}$-algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable Hilbert space $\mathcal{H}$ (see [6]). The Čech cohomology group $H^{3}(M, \mathbb{Z})$ is isomorphic to the singular cohomology group $H^{3}(M, \mathbb{Z})$, when $M$ is a triangularizable $C W$-complex (see [2, Theorem 15.8]).

Theorem 2. Each d-homogeneous $C^{*}$-algebra over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times$ $\prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$ is stably isomorphic to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times\right.$ $\prod^{s_{1}} S^{1}$ ).

Proof. Each non-trivial element in the cohomology group $H^{3}\left(\prod^{s_{4}} S^{4} \times\right.$ $\left.\Pi^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}, \mathbb{Z}\right)$ is given by a non-trivial element in $H^{3}\left(\left(S^{1}\right)^{3}, \mathbb{Z}\right)$, $H^{3}\left(S^{2} \times S^{1}, \mathbb{Z}\right)$, or $H^{3}\left(S^{3}, \mathbb{Z}\right)$ if there exist such factors.
$H^{3}\left(S^{2} \times S^{1}, \mathbb{Z}\right) \cong \mathbb{Z}$. By the Woodward theorem [9], $\left[S^{2} \times S^{1}, B P U(d)\right]$ is embedded into $H^{2}\left(S^{2} \times S^{1}, \mathbb{Z}_{d}\right) \oplus H^{4}\left(S^{2} \times S^{1}, \mathbb{Z}\right) \cong H^{2}\left(S^{2} \times S^{1}, \mathbb{Z}_{d}\right) \cong$ $H^{2}\left(S^{2}, \mathbb{Z}_{d}\right) \cong \mathbb{Z}_{d}$. So each $d$-homogeneous $C^{*}$-algebra over $S^{2} \times S^{1}$ is isomorphic to the tensor product of a $d$-homogeneous $C^{*}$-algebra over $S^{2}$ with $C\left(S^{1}\right)$, which is stably isomorphic to $C\left(S^{2}\right) \otimes C\left(S^{1}\right) \otimes M_{d}(\mathbb{C})$, since $H^{3}\left(S^{2}, \mathbb{Z}\right)=\{0\}$. Thus each $d$-homogeneous $C^{*}$-algebra over $S^{2} \times S^{1}$ is stably isomorphic to $C\left(S^{2} \times S^{1}\right) \otimes M_{d}(\mathbb{C})$.

Similarly, one can obtain the same result for the other cases.
Hence each $d$-homogeneous $C^{*}$-algebra over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times$ $\prod^{s_{1}} S^{1}$ is stably isomorphic to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$.

For each $k \in \mathbb{Z}$, let

$$
U(z, w)^{k}=\left(\begin{array}{ccccc}
1 & \ldots & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 1 & 0 & 0 \\
0 & \ldots & 0 & \bar{z} & w \\
0 & \ldots & 0 & -\bar{w} & z
\end{array}\right)^{k}=\left(\begin{array}{ccccc}
1 & \ldots & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \ldots & 1 & \frac{0}{0} & 0 \\
0 & \ldots & 0 & \overline{g_{k}(z, w)} & h_{k}(z, w) \\
0 & \ldots & 0 & -\overline{h_{k}(z, w)} & g_{k}(z, w)
\end{array}\right)
$$

for all $(z, w) \in S^{3} \subset \mathbb{C}^{2}$. Let $V(z, w)^{k}=\left(\begin{array}{cc}\overline{g_{k}(z, w)} & h_{k}(z, w) \\ -\overline{h_{k}(z, w)} & g_{k}(z, w)\end{array}\right)$.
Lemma 4. Each d-homogeneous $C^{*}$-algebra $B_{d, k}$ over $S^{4}$ is strongly Morita equivalent to $C\left(S^{4}\right)$.

Proof. The $d$-homogeneous $C^{*}$-algebra $B_{d, k}$ over $S^{4}$ can be realized as the $C^{*}$-algebra of matrices $\left(f_{i j}\right)_{i, j=1}^{d}$ of functions $f_{i j}$ with

$$
\begin{aligned}
f_{i j} & \in C\left(S^{4}\right) \text { if } i, j \in\{1, \cdots, d-2\} \\
\binom{f_{(d-1) i}}{f_{d i}} & \in \Omega \quad \& \quad\left(\begin{array}{ll}
f_{i(d-1)} & f_{i d}
\end{array}\right) \in \Omega^{*} \text { if } i \in\{1, \cdots, d-2\} \\
\left(\begin{array}{cc}
f_{(d-1)(d-1)} & f_{(d-1) d} \\
f_{d(d-1)} & f_{d d}
\end{array}\right) & \in \Omega_{0},
\end{aligned}
$$

where $\Omega, \Omega^{*}$ and $\Omega_{0}$ are the $C\left(S^{4}\right)$-modules defined as

$$
\begin{aligned}
& \Omega=\left\{\left.\binom{f}{g} \right\rvert\, f, g \in C\left(\left(e_{+}^{4} \amalg e_{-}^{4}\right)\right),\right. \\
& \left.\left.\left(\left.\binom{f}{g}\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{+}(z, w)=V(z, w)^{k}\left(\left.\binom{f}{g}\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)\right)_{-}(z, w) \quad \forall(z, w) \in S^{3}\right\} \\
& \Omega^{*}=\left\{\left.\left(\begin{array}{ll}
f & g
\end{array}\right) \right\rvert\, f, g \in C\left(\left(e_{+}^{4} \amalg e_{-}^{4}\right)\right), \quad\left(\begin{array}{ll}
f & g
\end{array}\right)^{*} \in \Omega\right\} \\
& \Omega_{0}=\left\{\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right) \right\rvert\, f_{1}, f_{2}, f_{3}, f_{4} \in C\left(\left(e_{+}^{4} \amalg e_{-}^{4}\right)\right),\left(\left.\left(\begin{array}{cc}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{+}(z, w)\right. \\
& \left.=V(z, w)^{k}\left(\left.\left(\begin{array}{cc}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{-}(z, w) V(z, w)^{-k} \quad \forall(z, w) \in S^{3}\right\} .
\end{aligned}
$$

Let $X$ be the complex vector space $\left(\oplus_{1}^{d-2} C\left(S^{4}\right)\right) \oplus \Omega$. We will consider the elements of $X$ as $(d, 1)$ matrices where the first $(d-2)$ entries are in $C\left(S^{4}\right)$ and the last 2 entries are in $\Omega$. If $x \in X$, denote by $x^{*}$ the $(1, d)$ matrix resulting from $x$ by transposition and involution so that $x^{*} \in\left(\oplus_{1}^{d-2} C\left(S^{4}\right)\right) \oplus$ $\Omega^{*}$. The space $X$ is a left $B_{d, k}$-module if module multiplication is defined by matrix multiplication $F \cdot x$, where $F=\left(g_{i j}\right)_{i, j=1}^{d} \in B_{d, k}$ and $x \in X$. If $g \in C\left(S^{4}\right)$ and $x \in X$, then $x \cdot g$ defines a right $C\left(S^{4}\right)$-module structure on $X$. Now we define a $B_{d, k}$-valued inner product $\langle\cdot, \cdot\rangle_{B_{d, k}}$ on $X$ and a $C\left(S^{4}\right)$-valued inner product $\langle\cdot, \cdot\rangle_{C\left(S^{4}\right)}$ on $X$ by

$$
\langle x, y\rangle_{B_{d, k}}=x \cdot y^{*} \quad \text { and } \quad\langle x, y\rangle_{C\left(S^{4}\right)}=x^{*} \cdot y
$$

for all $x, y \in X$, we have the matrix multiplication on the right. By the same reasoning as the proof given in [3, Theorem 3], equipped with this structure, $X$ becomes a $B_{d, k}-C\left(S^{4}\right)$-equivalence bimodule, and hence $B_{d, k}$ is strongly Morita equivalent to $C\left(S^{4}\right)$, as desired.

Theorem 3. Each d-homogeneous $C^{*}$-algebra $T^{d}$ over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times$ $\prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$ is strongly Morita equivalent to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times\right.$ $\left.\prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$.

Proof. Let $S=\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$, and $M=\prod^{s_{4}}\left(e_{+}^{4} \amalg\right.$ $\left.e_{-}^{4}\right) \times \prod^{s_{2}}\left(e_{+}^{2} \amalg e_{-}^{2}\right) \times \prod^{s_{3}}\left(S^{3} \times[0,1]\right) \times \prod^{\frac{s_{1}-s_{3}}{2}}\left(S^{1} \times[0,1]\right)$. The $d$-homogeneous $C^{*}$-algebra $E_{(c)(r)}^{(a)(b)}$ over $S$ can be realized as the $C^{*}$-algebra of matrices $\left(f_{i j}\right)_{i, j=1}^{d}$ of functions $f_{i j}$ with

$$
\begin{aligned}
f_{i j} & \in C(S) \text { if } i, j \in\{1, \cdots, d-2\} \\
\binom{f_{(d-1) i}}{f_{d i}} & \in \Gamma \quad \& \quad\left(\begin{array}{ll}
f_{i(d-1)} & f_{i d}
\end{array}\right) \in \Gamma^{*} \text { if } i \in\{1, \cdots, d-2\} \\
\left(\begin{array}{cc}
f_{(d-1)(d-1)} & f_{(d-1) d} \\
f_{d(d-1)} & f_{d d}
\end{array}\right) & \in \Gamma_{0},
\end{aligned}
$$

where $\Gamma, \Gamma^{*}$ and $\Gamma_{0}$ are the $C(S)$-modules defined as

$$
\begin{aligned}
\Gamma & =\left\{\left.\binom{f}{g} \right\rvert\, f, g \in C(M), \quad \forall i\right. \\
& \left(\left.\binom{f}{g}\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{+}\left(Z_{i}\right)=V\left(Z_{i}\right)^{a_{i}}\left(\left.\binom{f}{g}\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)-\left(Z_{i}\right), \quad \forall Z_{i} \in S^{3} \\
& \left.\left(\left.\binom{f}{g}\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{+}\left(w_{i}\right)=V\left(w_{i}\right)^{b_{i}}\left(\left.\binom{f}{g}\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)\right)_{-}\left(w_{i}\right), \quad \forall w_{i} \in S^{1} \\
& \left(\left.\binom{f}{g}\right|_{S^{3} \times[0,1]}\right)\left(X_{i}, 1\right)=V\left(X_{i}\right)^{c_{i}}\left(\left.\binom{f}{g}\right|_{S^{3} \times[0,1]}\right)\left(X_{i}, 0\right), \quad \forall X_{i} \in S^{3} \\
& \left.\left(\left.\binom{f}{g}\right|_{S^{1} \times[0,1]}\right)\left(y_{i}, 1\right)=V\left(y_{i}\right)^{r_{i}}\left(\left.\binom{f}{g}\right|_{S^{1} \times[0,1]}\right)\left(y_{i}, 0\right), \quad \forall y_{i} \in S^{1}\right\} \\
\Gamma^{*} & \left.\left.=\left\{\begin{array}{ll}
f & g
\end{array}\right) \right\rvert\, f, g \in C(M), \quad\left(\begin{array}{ll}
f
\end{array}\right)^{*} \in \Gamma\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma_{0}=\left\{\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right) \right\rvert\, f_{1}, f_{2}, f_{3}, f_{4} \in C(M), \quad \forall i\right. \\
& \left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{+}\left(Z_{i}\right) \\
& =V\left(Z_{i}\right)^{a_{i}}\left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{4} \amalg e_{-}^{4}}\right)_{-}\left(Z_{i}\right) V\left(Z_{i}\right)^{-a_{i}}, \forall Z_{i} \in S^{3} \\
& \left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{+}\left(w_{i}\right) \\
& =V\left(w_{i}\right)^{b_{i}}\left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{e_{+}^{2} \amalg e_{-}^{2}}\right)_{-}\left(w_{i}\right) V\left(w_{i}\right)^{-b_{i}}, \forall w_{i} \in S^{1} \\
& \left(\left.\left(\begin{array}{cc}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{S^{3} \times[0,1]}\right)\left(X_{i}, 1\right) \\
& =V\left(X_{i}\right)^{c_{i}}\left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{S^{3} \times[0,1]}\right)\left(X_{i}, 0\right) V\left(X_{i}\right)^{-c_{i}}, \forall X_{i} \in S^{3} \\
& \left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{S^{1} \times[0,1]}\right)\left(y_{i}, 1\right) \\
& \left.=V\left(y_{i}\right)^{r_{i}}\left(\left.\left(\begin{array}{ll}
f_{1} & f_{2} \\
f_{3} & f_{4}
\end{array}\right)\right|_{S^{1} \times[0,1]}\right)\left(y_{i}, 0\right) V\left(y_{i}\right)^{-r_{i}}, \forall y_{i} \in S^{1}\right\} .
\end{aligned}
$$

Let $Y$ be the complex vector space $\left(\oplus_{1}^{d-2} C(S)\right) \oplus \Gamma$. We will consider the elements of $Y$ as $(d, 1)$ matrices where the first $(d-2)$ entries are in $C(S)$ and the last 2 entries are in $\Gamma$. If $y \in Y$, denote by $y^{*}$ the $(1, d)$ matrix resulting from $y$ by transposition and involution so that $y^{*} \in\left(\oplus_{1}^{d-2} C(S)\right) \oplus \Gamma^{*}$. The space $Y$ is a left $E_{(c)(r)}^{(a)(b)}$-module if module multiplication is defined by matrix multiplication $F \cdot y$, where $F=\left(g_{i j}\right)_{i, j=1}^{d} \in E_{(c)(r)}^{(a)(b)}$ and $y \in Y$. If $g \in C(S)$ and $y \in Y$, then $y \cdot g$ defines a right $C(S)$-module structure on $Y$. Now we define an $E_{(c)(r)}^{(a)(b)}$-valued inner product $\langle\cdot, \cdot\rangle_{E_{(c)(r)}^{(a)(b)}}^{(\text {on }} Y$ and a $C(S)$-valued inner product $\langle\cdot, \cdot\rangle_{C(S)}$ on $Y$ by

$$
\langle x, y\rangle_{E_{(c)(r)}^{(a)(b)}}=x \cdot y^{*} \quad \text { and } \quad\langle x, y\rangle_{C(S)}=x^{*} \cdot y
$$

for all $x, y \in Y$, we have the matrix multiplication on the right. By the same reasoning as the proof given in [1, Theorem 3.3], equipped with this structure, $Y$ becomes an $E_{(c)(r)}^{(a)(b)}-C(S)$-equivalence bimodule, and hence $E_{(c)(r)}^{(a)(b)}$ is strongly Morita equivalent to $C(S)$. By a finite step of the above process, one can obtain the result.

Therefore, each $C^{*}$-algebra $T^{d}$ over $\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}$ is strongly Morita equivalent to $C\left(\prod^{s_{4}} S^{4} \times \prod^{s_{2}} S^{2} \times \prod^{s_{3}} S^{3} \times \prod^{s_{1}} S^{1}\right)$.

## References

1. D. Boo, P. Kang and C. Park, The sectional $C^{*}$-algebras over a torus with fibres a non-commutative torus, Far East J. Math. Sci. 1 (1999), 561-579.
2. R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, Heidelberg and Berlin, 1982.
3. M. Brabanter, The classification of rational rotation $C^{*}$-algebras, Arch. Math. 43 (1984), 79-83.
4. L. Brown, P. Green and M. Rieffel, Stable isomorphism and strong Morita equivalence of $C^{*}$-algebras, Pacific J. Math. 71 (1977), 349-363.
5. S. Disney and I. Raeburn, Homogeneous $C^{*}$-algebras whose spectra are tori, J. Austral. Math. Soc. (Ser. A) 38 (1985), 9-39.
6. J. Dixmier, $C^{*}$-Algebras, North-Holland, Amsterdam, New York and Oxford, 1977.
7. F. Krauss and T.C. Lawson, Examples of homogeneous $C^{*}$-algebras, Memoirs A.M.S. 148 (1974), 153-164.
8. M. Rieffel, Morita equivalence for operator algebras, Operator Algebras and Applications (R. Kadison, ed.), Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 285-298.
9. L. Woodward, The classification of principal $P U(k)$-bundles over a 4-complex, J. London Math. Soc. 25 (1982), 513-524.

* 

Department of Mathematics
Chungnam National University
DaEjeon 305-764, Korea
E-mail: cgpark@cnu.ac.kr

