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GEOMETRY OF L2(Ω, g)

Jaiok Roh*

Abstract. Roh[1] derived 2D g-Navier-Stokes equations from 3D
Navier-Stokes equations. In this paper, we will see the space L2(Ω, g),
which is the weighted space of L2(Ω), as natural generalized space of
L2(Ω) which is mathematical setting for Navier-Stokes equations.
Our future purpose is to use the space L2(Ω, g) as mathematical
setting for the g-Navier-Stokes equations.

In addition, we will see Helmoltz-Leray projection on L2
per(Ω, g)

and compare with the one on L2
per(Ω).

1. Introduction

In this paper, we assume g(x1, x2) ∈ C∞
per(Ω) and 0 < m < g(x1, x2) <

M for some constant m,M . Here, we consider only periodic boundary
condition because one can get similar results for Dirichlet boundary con-
dition. In the case of Navier-Stokes equations with periodic boundary
condition , it is usual to use L2

per(Ω) for mathematical setting. So for
our problem, we study the geometry of L2

per(Ω, g), which is generalized
space of L2

per(Ω). One note that L2
per(Ω, g) is the space with the scalar

product and the norm by, 〈u,v〉g =
∫
Ω(u · v) g dx, ‖ u ‖2

g = 〈u,u〉g,
where x = (x1, x2). One can see L2

per(Ω, g) = L2
per(Ω) for g = 1. Also,

two spaces have equivalent norms. Then, we define the functional space,

Hk(Ω, g) = {u ∈ L2
per(Ω, g) : Dαu ∈ L2(Ω, g), for all |α| ≤ k}

with the scalar product 〈u,v〉Hk(Ω,g) =
∑
|α|≤k〈Dαu, Dαv〉g.

In next chapter, we will see geometry of the space L2
per(Ω) in several

different view. We also define the g-Helmoltz-Leray orthogonal decom-
position Pg on L2

per(Ω, g) and prove Pg → P1, as g → 1 in some sense, in
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the operator norm. For the references, one can refer Naylor and Sell[2],
Sell and You[3] and Roh[1].

2. Main Theorems

Now we define spaces,

Hg = CLL2(Ω,g){u ∈ C∞
per(Ω) : ∇ · gu = 0}

Hg,g̃ = CLL2(Ω,g){u ∈ C∞
per(Ω) : ∇ · gu = 0,

∫

Ω
u g̃ dx = 0}

Vg = {u ∈ H1
per(Ω, g) : ∇ · gu = 0}

Vg,g̃ = {u ∈ H1
per(Ω, g) : ∇ · gu = 0,

∫

Ω
u g̃ dx = 0}

Kg,g̃ = {u ∈ L2
per(Ω, g) :

∫

Ω
u g̃ dx = 0}

and

Q = CLL2(Ω){∇p : p ∈ C1
per(Ω, R)}

Cg = {m
g

, m ∈ R2}, Mgu =
1
g

∫

Ω
u g dx

We define Rg : L2
per(Ω, g) → Kg,g by Rgu = (I − Mg)u, for u ∈

L2
per(Ω), where I is the identity mapping on L2

per(Ω, g). Then, we denote
that N (Mg) is the null space of Mg and R(Mg) is the range of Mg. We
note that Mg is a linear projection on L2

per(Ω, g) and M2
g = Mg. In

addition, the adjoint satisfies M∗
g = M1 in L2

per(Ω, g) and one has

N (Mg) = Kg,g = R(Rg), N (M1) = Kg,1 = R(R1)

and
R(Mg) = Cg = N (Rg), R(M1) = R2 = N (R1),

where R2 is viewed as a subspace of L2
per(Ω). Furthermore, we have

Hg ∩N (Mg) = Hg,g, Hg ∩N (M1) = Hg,1, Hg ∩R(Mg) = Cg.

Then we have the following theorem.

Theorem 2.1. M1 and Mg are bounded projections on L2
per(Ω, g).

Furthermore the adjoint satisfy M∗
g = M1 and M∗

1 = Mg, which implies
that

N (M1) ⊥g R(Mg) and N (Mg) ⊥g R(M1).
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Note that Mg and Rg are orthogonal projection on L2
per(Ω, g) if and only

if g = 1. As a result we have

(1) L2(Ω, g) = R(Mg)⊕N (M1) = R(M1)⊕N (Mg)

as well as

Hg = (Hg ∩R(Mg))⊕ (Hg ∩N (M1)) = Cg ⊕Hg,1.

Proof. Let u,v ∈ L2
per(Ω, g). Then

〈Mgu,v〉g =
∫

Ω
Mgu · v g dx =

∫

Ω

∫
Ω u g dx

g
· v g dx

=
∫

Ω

∫

Ω
u gdx · v dx =

∫

Ω
ugdx ·

∫

Ω
vdx.

Also, we have

〈u,M1v〉g =
∫

Ω
(u ·M1v) g dx =

∫

Ω
ug dx ·

∫

Ω
v dx.

Thus one has 〈Mgu,v〉g = 〈u,M1v〉g, for u,v ∈ L2
per(Ω, g).

So, M∗
g v = M1v, for all v ∈ L2

per(Ω, g). Similarly, M∗
1u = Mgu, for

all v ∈ L2
per(Ω, g). The rest of proof comes by the definition of inner

product in the space L2(Ω, g).

We now will show that L2
per(Ω, g) = Hg ⊕ Q and Hg = Hg,1 ⊕ Cg.

In fact, for every v ∈ L2
per(Ω, g), one has v = u +∇p and u = w + k

g ,
where u ∈ Hg, w ∈ Hg,1 and k = M1(1

g )−1M1(v).

Lemma 2.2. For any v ∈ L2
per(Ω, g) there exist unique ∇p ∈ Q and

u ∈ Hg such that v = u⊕∇p.

Proof. We define the Hilbert space Z as

Z = {p ∈ H1
per(Ω, g, R) :

∫

Ω
p dx = 0}

with the norm ‖ p ‖2
Z = ‖ ∇p ‖2

g. Now, we define a bilinear form, a(p, q) =
〈−∆gp, q〉g = 〈∇p,∇q〉g for weak formulation. Then, one get

|a(p, q)| = |〈∇p,∇q〉g| ≤ ‖ ∇p ‖g ‖ ∇q ‖g = ‖ p ‖Z ‖ q ‖Z ,

and |a(p, p)| = |〈∇p,∇p〉g| = ‖ ∇p ‖2
g = ‖ p ‖2

Z . Also, we have b(q) =
〈1

g∇ · gv, q〉g = 〈v,∇q〉g which implies |b(q)| ≤ ‖ v ‖g ‖ ∇q ‖g.
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Therefore the bilinear form a(p, q) satisfies the conditions for Lax-
Milgram theorem. So for any v ∈ L2

per(Ω, g), there exist a unique so-
lution p ∈ Z of the equation, 1

g (∇ · g∇p) = 1
g (∇ · gv). Then, we set

u = v −∇p and note u ∈ Hg. Also, integration by parts give

〈∇p,u〉g =
∫

Ω
∇p · gu dx =

∫

Ω
p∇ · (gu) dx = 0.

Remark 2.1. We define k = [M1(1
g )]−1 M1(v) and we set w = u− k

g .
Then M1(w) = M1(u)−M1(k

g ) = M1(v)−kM1(1
g ) = 0 by the definition

of k. Therefore, for v ∈ L2
per(Ω, g) there exists unique ∇p ∈ Q, w ∈ Hg,1

and u ∈ Hg such that v = u +∇p = w + k
g +∇p.

Now, the g-Helmoltz-Leray orthogonal projection Pg : L2
per(Ω, g) →

Hg is defined by

Pg(v) = u, for v ∈ L2
per(Ω)

where v = u +∇p in lemma 2.2. We can also define another Helmoltz-
Leray orthogonal projection Pg,1 : L2

per(Ω, g) → Hg,1 by

Pg,1(v) = w, for v ∈ L2
per(Ω)

where v = w + k
g +∇p in remark 2.1.

Remark 2.2. Since Pg is a orthogonal projection, by (1), one note
that

Hg = Pg(R(Mg))⊕ Pg(N (M1)) = Cg ⊕Hg,1,

as well as

Hg = Pg(R(M1))⊕ Pg(N (Mg)) = Pg(R2)⊕Hg,g,

where R2 is considered as a subset of L2
per(Ω, g) and ⊕ is the standard

orthogonal sum in the space L2
per(Ω, g).

Lemma 2.3. We have

P1Pgu = u, for u ∈ H1, and PgP1u = u, for u ∈ Hg.

Furthermore, one has

PgP1v = Pgv, P1Pgv = P1v, for all v ∈ L2
per(Ω).

Proof. We skip the proof.
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By lemma 2.2, for given u ∈ Hg there exist unique ∇p ∈ Q and
w ∈ H1 such that

(2) u = ∇p + w, w = P1u.

By using the fact that ∇ ·w = 0, equation (2) implies that ∆p = ∇ · u,
where the derivatives are in the sense of distributions. Since u ∈ Hg,
one has 0 = ∇ · gu = ∇g · u + g∇ · u and we obtain

(3) ∆p = −1
g
∇g · u ≡ f, for u ∈ Hg,1.

To find a strong solution for the Poisson equation ∆p = f , we need the
consistency property, M1f = 0. For our problem, where f = −1

g∇g · u,
one needs

M1(
1
g
∇g · u) =

∫

Ω
(
1
g
∇g) · u = 0.

Since ∇ · (gu) = 0, we have u ∈ Hg⊥gQ. Hence
∫

Ω

1
g
∇g · u dx =

∫

Ω

1
g2
∇g · u g dx = −

∫

Ω
∇(

1
g
) · u g dx = 0.

Since 0 < m ≤ g ≤ M and M1p = 0, one has from Poincaré inequality
that

(4) ‖ ∇p ‖ ≤ ‖ p ‖H1(Ω) ≤ ‖ p ‖H2(Ω) ≤ c
1
m
‖ ∇g ‖∞‖ u ‖,

for some positive constant c.
We now define the operator L : Hg,1 → Q by Lu = ∇p, where ∇p

is given as a strong solution of (3). We note from equation (2) that
(I − L)u = w, that is, I − L = P1|Hg,1

, where I is considered as the
identity mapping on the space Hg,1. From inequality (4), the operator
norm of L satisfies

‖ (I − P1)|Hg,1
‖

op
= ‖ L ‖op ≤

c

m
‖ ∇g ‖∞.

Similarly, for given w ∈ H1, there exist unique ∇q ∈ Q and u ∈ Hg such
that

(5) w = ∇q + u, u = Pgw.

Now, we can define the operator K : H1,1 → Q by Kw = ∇q, where ∇q
is given by (5). By using the fact 1

g∇· gu = 0, equation (5) implies that

1
g
(∇ · g∇q) =

1
g
∇ · gw.
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Since w ∈ H1,1, we obtains

(6)
1
g
(∇ · g∇q) =

1
g
∇g ·w, for w ∈ H1,1.

Then as we did in the proof of lemma 2.2, by using Lax-Milgram theo-
rem, for given w ∈ H1,1, one can find a strong solution ∇q ∈ Z of (6)
with the following estimate,

(7) ‖ ∇q ‖ ≤ ‖ ∇g ‖∞
m

‖ w ‖.
Also we note that I − K = Pg |H1,1

, where I is considered as the

identity mapping on the space H1,1. Therefore, from inequality (7), one
has the operator norm of K by

‖ (I − Pg)|H1,1
‖

op
= ‖ K ‖op ≤

‖ ∇g ‖∞
m

.

For the operator Pg − P1 : L2
per(Ω) → L2

per(Ω), we have the following
result concerning the operator norm ‖ Pg − P1 ‖op.

Theorem 2.4. As ‖ ∇g ‖∞ → 0, we have ‖ (Pg − P1)|L2
‖

op
→ 0.

Proof. For u ∈ L2
per(Ω) we obtain

u = vg +∇pg, u = v1 +∇p1, vg = Pgu, and v1 = P1u,

where vg ∈ Hg, v1 ∈ H1, and ∇pg,∇p1 ∈ Q. Since ∇ · v1 = 0 and
∇ · gvg = 0, we have

∆p1 = ∇ · u, ∆gpg =
1
g
(∇ · gu) = ∇ · u + (

∇g

g
· u),

where ∆gpg = ∆pg + (∇g
g · ∇)pg. So, one obtains

∆(pg − p1) =
∇g

g
· u− (

∇g

g
· ∇)pg.

Let us denote p = pg − p1. Since we have M1(p) = 0, and ‖ ∇pg ‖2
g ≤

‖ u ‖2
g which implies m‖ ∇pg ‖2 ≤ M‖ u ‖2, due to Poincaré inequality

we have some constant c such that
‖ Pgu− P1u ‖ = ‖ ∇p ‖ ≤ ‖ p ‖H2

≤ c

(
‖ ∇g

g
‖
∞
‖ u ‖+ ‖ ∇g

g
‖
∞
‖ ∇pg ‖

)

≤ c (1 +

√
M

m
) ‖ ∇g

g
‖
∞
‖ u ‖.
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