GEOMETRY OF $L^{2}(\Omega, g)$

Jaiok RoH*

Abstract

Roh[1] derived 2D g-Navier-Stokes equations from 3D Navier-Stokes equations. In this paper, we will see the space $L^{2}(\Omega, g)$, which is the weighted space of $L^{2}(\Omega)$, as natural generalized space of $L^{2}(\Omega)$ which is mathematical setting for Navier-Stokes equations. Our future purpose is to use the space $L^{2}(\Omega, g)$ as mathematical setting for the g-Navier-Stokes equations.

In addition, we will see Helmoltz-Leray projection on $L_{p e r}^{2}(\Omega, g)$ and compare with the one on $L_{p e r}^{2}(\Omega)$.

1. Introduction

In this paper, we assume $g\left(x_{1}, x_{2}\right) \in C_{p e r}^{\infty}(\Omega)$ and $0<m<g\left(x_{1}, x_{2}\right)<$ M for some constant m, M. Here, we consider only periodic boundary condition because one can get similar results for Dirichlet boundary condition. In the case of Navier-Stokes equations with periodic boundary condition, it is usual to use $L_{p e r}^{2}(\Omega)$ for mathematical setting. So for our problem, we study the geometry of $L_{p e r}^{2}(\Omega, g)$, which is generalized space of $L_{p e r}^{2}(\Omega)$. One note that $L_{p e r}^{2}(\Omega, g)$ is the space with the scalar product and the norm by, $\langle\mathbf{u}, \mathbf{v}\rangle_{g}=\int_{\Omega}(\mathbf{u} \cdot \mathbf{v}) g d \mathbf{x}, \quad\|\mathbf{u}\|_{g}^{2}=\langle\mathbf{u}, \mathbf{u}\rangle_{g}$, where $\mathbf{x}=\left(x_{1}, x_{2}\right)$. One can see $L_{p e r}^{2}(\Omega, g)=L_{p e r}^{2}(\Omega)$ for $g=1$. Also, two spaces have equivalent norms. Then, we define the functional space,

$$
H^{k}(\Omega, g)=\left\{\mathbf{u} \in L_{p e r}^{2}(\Omega, g): D^{\alpha} \mathbf{u} \in L^{2}(\Omega, g), \quad \text { for all } \quad|\alpha| \leq k\right\}
$$

with the scalar product $\langle\mathbf{u}, \mathbf{v}\rangle_{H^{k}(\Omega, g)}=\sum_{|\alpha| \leq k}\left\langle D^{\alpha} \mathbf{u}, D^{\alpha} \mathbf{v}\right\rangle_{g}$.
In next chapter, we will see geometry of the space $L_{\text {per }}^{2}(\Omega)$ in several different view. We also define the g-Helmoltz-Leray orthogonal decomposition P_{g} on $L_{p e r}^{2}(\Omega, g)$ and prove $P_{g} \rightarrow P_{1}$, as $g \rightarrow 1$ in some sense, in

Received July 25, 2006.
2000 Mathematics Subject Classification: Primary 34C25, 35Q30 Secondary 76D05.

Key words and phrases: Navier-Stokes equations, Leray projection, Lax-Milgram theorem, $L^{2}(\Omega)$.
the operator norm. For the references, one can refer Naylor and Sell[2], Sell and You[3] and Roh[1].

2. Main Theorems

Now we define spaces,

$$
\begin{aligned}
H_{g} & =C L_{L^{2}(\Omega, g)}\left\{\mathbf{u} \in C_{\mathrm{per}}^{\infty}(\Omega): \nabla \cdot g \mathbf{u}=0\right\} \\
H_{g, \tilde{g}} & =C L_{L^{2}(\Omega, g)}\left\{\mathbf{u} \in C_{\mathrm{per}}^{\infty}(\Omega): \nabla \cdot g \mathbf{u}=0, \int_{\Omega} \mathbf{u} \tilde{g} d \mathbf{x}=0\right\} \\
V_{g} & =\left\{\mathbf{u} \in H_{\mathrm{per}}^{1}(\Omega, g): \nabla \cdot g \mathbf{u}=0\right\} \\
V_{g, \tilde{g}} & =\left\{\mathbf{u} \in H_{\mathrm{per}}^{1}(\Omega, g): \nabla \cdot g \mathbf{u}=0, \int_{\Omega} \mathbf{u} \tilde{g} d \mathbf{x}=0\right\} \\
K_{g, \tilde{g}} & =\left\{\mathbf{u} \in L_{p e r}^{2}(\Omega, g): \int_{\Omega} \mathbf{u} \tilde{g} d \mathbf{x}=0\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
Q & =C L_{L^{2}(\Omega)}\left\{\nabla p: p \in C_{p e r}^{1}(\Omega, R)\right\} \\
C_{g} & =\left\{\frac{\mathbf{m}}{g}, \quad \mathbf{m} \in R^{2}\right\}, \quad M_{g} \mathbf{u}=\frac{1}{g} \int_{\Omega} \mathbf{u} g d \mathbf{x}
\end{aligned}
$$

We define $R_{g}: L_{p e r}^{2}(\Omega, g) \rightarrow K_{g, g}$ by $R_{g} \mathbf{u}=\left(I-M_{g}\right) \mathbf{u}$, for $\mathbf{u} \in$ $L_{\text {per }}^{2}(\Omega)$, where I is the identity mapping on $L_{\text {per }}^{2}(\Omega, g)$. Then, we denote that $\mathcal{N}\left(M_{g}\right)$ is the null space of M_{g} and $\mathcal{R}\left(M_{g}\right)$ is the range of M_{g}. We note that M_{g} is a linear projection on $L_{p e r}^{2}(\Omega, g)$ and $M_{g}^{2}=M_{g}$. In addition, the adjoint satisfies $M_{g}^{*}=M_{1}$ in $L_{p e r}^{2}(\Omega, g)$ and one has

$$
\mathcal{N}\left(M_{g}\right)=K_{g, g}=\mathcal{R}\left(R_{g}\right), \quad \mathcal{N}\left(M_{1}\right)=K_{g, 1}=\mathcal{R}\left(R_{1}\right)
$$

and

$$
\mathcal{R}\left(M_{g}\right)=C_{g}=\mathcal{N}\left(R_{g}\right), \quad \mathcal{R}\left(M_{1}\right)=R^{2}=\mathcal{N}\left(R_{1}\right)
$$

where R^{2} is viewed as a subspace of $L_{p e r}^{2}(\Omega)$. Furthermore, we have

$$
H_{g} \cap \mathcal{N}\left(M_{g}\right)=H_{g, g}, \quad H_{g} \cap \mathcal{N}\left(M_{1}\right)=H_{g, 1}, \quad H_{g} \cap \mathcal{R}\left(M_{g}\right)=C_{g}
$$

Then we have the following theorem.
THEOREM 2.1. M_{1} and M_{g} are bounded projections on $L_{p e r}^{2}(\Omega, g)$. Furthermore the adjoint satisfy $M_{g}^{*}=M_{1}$ and $M_{1}^{*}=M_{g}$, which implies that

$$
\mathcal{N}\left(M_{1}\right) \perp_{g} \mathcal{R}\left(M_{g}\right) \quad \text { and } \quad \mathcal{N}\left(M_{g}\right) \perp_{g} \mathcal{R}\left(M_{1}\right)
$$

Note that M_{g} and R_{g} are orthogonal projection on $L_{p e r}^{2}(\Omega, g)$ if and only if $g=1$. As a result we have

$$
\begin{equation*}
L^{2}(\Omega, g)=\mathcal{R}\left(M_{g}\right) \oplus \mathcal{N}\left(M_{1}\right)=\mathcal{R}\left(M_{1}\right) \oplus \mathcal{N}\left(M_{g}\right) \tag{1}
\end{equation*}
$$

as well as

$$
H_{g}=\left(H_{g} \cap \mathcal{R}\left(M_{g}\right)\right) \oplus\left(H_{g} \cap \mathcal{N}\left(M_{1}\right)\right)=C_{g} \oplus H_{g, 1} .
$$

Proof. Let $\mathbf{u}, \mathbf{v} \in L_{\text {per }}^{2}(\Omega, g)$. Then

$$
\begin{aligned}
\left\langle M_{g} \mathbf{u}, \mathbf{v}\right\rangle_{g} & =\int_{\Omega} M_{g} \mathbf{u} \cdot \mathbf{v} g d \mathbf{x}=\int_{\Omega} \frac{\int_{\Omega} \mathbf{u} g d \mathbf{x}}{g} \cdot \mathbf{v} g d \mathbf{x} \\
& =\int_{\Omega} \int_{\Omega} \mathbf{u} g d \mathbf{x} \cdot \mathbf{v} d \mathbf{x}=\int_{\Omega} \mathbf{u} g d \mathbf{x} \cdot \int_{\Omega} \mathbf{v} d \mathbf{x}
\end{aligned}
$$

Also, we have

$$
\left\langle\mathbf{u}, M_{1} \mathbf{v}\right\rangle_{g}=\int_{\Omega}\left(\mathbf{u} \cdot M_{1} \mathbf{v}\right) g d \mathbf{x}=\int_{\Omega} \mathbf{u} g d \mathbf{x} \cdot \int_{\Omega} \mathbf{v} d \mathbf{x} .
$$

Thus one has $\left\langle M_{g} \mathbf{u}, \mathbf{v}\right\rangle_{g}=\left\langle\mathbf{u}, M_{1} \mathbf{v}\right\rangle_{g}$, for $\mathbf{u}, \mathbf{v} \in L_{p e r}^{2}(\Omega, g)$.
So, $M_{g}^{*} \mathbf{v}=M_{1} \mathbf{v}$, for all $\mathbf{v} \in L_{p e r}^{2}(\Omega, g)$. Similarly, $M_{1}^{*} \mathbf{u}=M_{g} \mathbf{u}$, for all $\mathbf{v} \in L_{\text {per }}^{2}(\Omega, g)$. The rest of proof comes by the definition of inner product in the space $L^{2}(\Omega, g)$.

We now will show that $L_{p e r}^{2}(\Omega, g)=H_{g} \oplus Q$ and $H_{g}=H_{g, 1} \oplus C_{g}$. In fact, for every $\mathbf{v} \in L_{p e r}^{2}(\Omega, g)$, one has $\mathbf{v}=\mathbf{u}+\nabla p$ and $\mathbf{u}=\mathbf{w}+\frac{\mathbf{k}}{g}$, where $\mathbf{u} \in H_{g}$, $\mathbf{w} \in H_{g, 1}$ and $\mathbf{k}=M_{1}\left(\frac{1}{g}\right)^{-1} M_{1}(\mathbf{v})$.

Lemma 2.2. For any $\mathbf{v} \in L_{\text {per }}^{2}(\Omega, g)$ there exist unique $\nabla p \in Q$ and $\mathbf{u} \in H_{g}$ such that $\mathbf{v}=\mathbf{u} \oplus \nabla p$.

Proof. We define the Hilbert space \mathcal{Z} as

$$
\mathcal{Z}=\left\{p \in H_{p e r}^{1}(\Omega, g, R): \int_{\Omega} p d \mathbf{x}=0\right\}
$$

with the norm $\|p\|_{\mathcal{Z}}^{2}=\|\nabla p\|_{g}^{2}$. Now, we define a bilinear form, $a(p, q)=$ $\left\langle-\Delta_{g} p, q\right\rangle_{g}=\langle\nabla p, \nabla q\rangle_{g}$ for weak formulation. Then, one get

$$
|a(p, q)|=\left|\langle\nabla p, \nabla q\rangle_{g}\right| \leq\|\nabla p\|_{g}\|\nabla q\|_{g}=\|p\|_{\mathcal{Z}}\|q\|_{\mathcal{Z}}
$$

and $|a(p, p)|=\left|\langle\nabla p, \nabla p\rangle_{g}\right|=\|\nabla p\|_{g}^{2}=\|p\|_{\mathcal{Z}}^{2}$. Also, we have $b(q)=$ $\left\langle\frac{1}{g} \nabla \cdot g \mathbf{v}, q\right\rangle_{g}=\langle\mathbf{v}, \nabla q\rangle_{g}$ which implies $|b(q)| \leq\|\mathbf{v}\|_{g}\|\nabla q\|_{g}$.

Therefore the bilinear form $a(p, q)$ satisfies the conditions for LaxMilgram theorem. So for any $\mathbf{v} \in L_{p e r}^{2}(\Omega, g)$, there exist a unique solution $p \in \mathcal{Z}$ of the equation, $\frac{1}{g}(\nabla \cdot g \nabla p)=\frac{1}{g}(\nabla \cdot g \mathbf{v})$. Then, we set $\mathbf{u}=\mathbf{v}-\nabla p$ and note $\mathbf{u} \in H_{g}$. Also, integration by parts give

$$
\langle\nabla p, \mathbf{u}\rangle_{g}=\int_{\Omega} \nabla p \cdot g \mathbf{u} d \mathbf{x}=\int_{\Omega} p \nabla \cdot(g \mathbf{u}) d \mathbf{x}=0
$$

Remark 2.1. We define $\mathbf{k}=\left[M_{1}\left(\frac{1}{g}\right)\right]^{-1} M_{1}(\mathbf{v})$ and we set $\mathbf{w}=\mathbf{u}-\frac{\mathbf{k}}{g}$. Then $M_{1}(\mathbf{w})=M_{1}(\mathbf{u})-M_{1}\left(\frac{\mathbf{k}}{g}\right)=M_{1}(\mathbf{v})-\mathbf{k} M_{1}\left(\frac{1}{g}\right)=0$ by the definition of \mathbf{k}. Therefore, for $\mathbf{v} \in L_{p e r}^{2}(\Omega, g)$ there exists unique $\nabla p \in Q$, w $\in H_{g, 1}$ and $\mathbf{u} \in H_{g}$ such that $\mathbf{v}=\mathbf{u}+\nabla p=\mathbf{w}+\frac{\mathbf{k}}{g}+\nabla p$.

Now, the g-Helmoltz-Leray orthogonal projection $P_{g}: L_{p e r}^{2}(\Omega, g) \rightarrow$ H_{g} is defined by

$$
P_{g}(\mathbf{v})=\mathbf{u}, \quad \text { for } \quad \mathbf{v} \in L_{\text {per }}^{2}(\Omega)
$$

where $\mathbf{v}=\mathbf{u}+\nabla p$ in lemma 2.2. We can also define another HelmoltzLeray orthogonal projection $P_{g, 1}: L_{p e r}^{2}(\Omega, g) \rightarrow H_{g, 1}$ by

$$
P_{g, 1}(\mathbf{v})=\mathbf{w}, \quad \text { for } \quad \mathbf{v} \in L_{\text {per }}^{2}(\Omega)
$$

where $\mathbf{v}=\mathbf{w}+\frac{\mathbf{k}}{g}+\nabla p$ in remark 2.1.
Remark 2.2. Since P_{g} is a orthogonal projection, by (1), one note that

$$
H_{g}=P_{g}\left(\mathcal{R}\left(M_{g}\right)\right) \oplus P_{g}\left(\mathcal{N}\left(M_{1}\right)\right)=C_{g} \oplus H_{g, 1}
$$

as well as

$$
H_{g}=P_{g}\left(\mathcal{R}\left(M_{1}\right)\right) \oplus P_{g}\left(\mathcal{N}\left(M_{g}\right)\right)=P_{g}\left(R^{2}\right) \oplus H_{g, g}
$$

where R^{2} is considered as a subset of $L_{p e r}^{2}(\Omega, g)$ and \oplus is the standard orthogonal sum in the space $L_{p e r}^{2}(\Omega, g)$.

Lemma 2.3. We have

$$
P_{1} P_{g} \mathbf{u}=\mathbf{u}, \quad \text { for } \quad \mathbf{u} \in H_{1}, \quad \text { and } \quad P_{g} P_{1} \mathbf{u}=\mathbf{u}, \quad \text { for } \quad \mathbf{u} \in H_{g}
$$

Furthermore, one has

$$
P_{g} P_{1} \mathbf{v}=P_{g} \mathbf{v}, \quad P_{1} P_{g} \mathbf{v}=P_{1} \mathbf{v}, \quad \text { for all } \quad \mathbf{v} \in L_{p e r}^{2}(\Omega)
$$

Proof. We skip the proof.

By lemma 2.2 , for given $\mathbf{u} \in H_{g}$ there exist unique $\nabla p \in Q$ and $\mathbf{w} \in H_{1}$ such that

$$
\begin{equation*}
\mathbf{u}=\nabla p+\mathbf{w}, \quad \mathbf{w}=P_{1} \mathbf{u} \tag{2}
\end{equation*}
$$

By using the fact that $\nabla \cdot \mathbf{w}=0$, equation (2) implies that $\Delta p=\nabla \cdot \mathbf{u}$, where the derivatives are in the sense of distributions. Since $\mathbf{u} \in H_{g}$, one has $0=\nabla \cdot g \mathbf{u}=\nabla g \cdot \mathbf{u}+g \nabla \cdot \mathbf{u}$ and we obtain

$$
\begin{equation*}
\Delta p=-\frac{1}{g} \nabla g \cdot \mathbf{u} \equiv f, \quad \text { for } \quad \mathbf{u} \in H_{g, 1} \tag{3}
\end{equation*}
$$

To find a strong solution for the Poisson equation $\Delta p=f$, we need the consistency property, $M_{1} f=0$. For our problem, where $f=-\frac{1}{g} \nabla g \cdot \mathbf{u}$, one needs

$$
M_{1}\left(\frac{1}{g} \nabla g \cdot \mathbf{u}\right)=\int_{\Omega}\left(\frac{1}{g} \nabla g\right) \cdot \mathbf{u}=0 .
$$

Since $\nabla \cdot(g \mathbf{u})=0$, we have $\mathbf{u} \in H_{g} \perp_{g} Q$. Hence

$$
\int_{\Omega} \frac{1}{g} \nabla g \cdot \mathbf{u} d \mathbf{x}=\int_{\Omega} \frac{1}{g^{2}} \nabla g \cdot \mathbf{u} g d \mathbf{x}=-\int_{\Omega} \nabla\left(\frac{1}{g}\right) \cdot \mathbf{u} g d \mathbf{x}=0 .
$$

Since $0<m \leq g \leq M$ and $M_{1} p=0$, one has from Poincaré inequality that

$$
\begin{equation*}
\|\nabla p\| \leq\|p\|_{H^{1}(\Omega)} \leq\|p\|_{H^{2}(\Omega)} \leq c \frac{1}{m}\|\nabla g\|_{\infty}\|\mathbf{u}\| \tag{4}
\end{equation*}
$$

for some positive constant c.
We now define the operator $L: H_{g, 1} \rightarrow Q$ by $L \mathbf{u}=\nabla p$, where ∇p is given as a strong solution of (3). We note from equation (2) that $(I-L) \mathbf{u}=\mathbf{w}$, that is, $I-L=P_{\left.\right|_{H_{g, 1}}}$, where I is considered as the identity mapping on the space $H_{g, 1}$. From inequality (4), the operator norm of L satisfies

$$
\left\|\left(I-P_{1}\right)_{\left.\right|_{g, 1}}\right\|_{o p}=\|L\|_{o p} \leq \frac{c}{m}\|\nabla g\|_{\infty}
$$

Similarly, for given $\mathbf{w} \in H_{1}$, there exist unique $\nabla q \in Q$ and $\mathbf{u} \in H_{g}$ such that

$$
\begin{equation*}
\mathbf{w}=\nabla q+\mathbf{u}, \quad \mathbf{u}=P_{g} \mathbf{w} \tag{5}
\end{equation*}
$$

Now, we can define the operator $K: H_{1,1} \rightarrow Q$ by $K \mathbf{w}=\nabla q$, where ∇q is given by (5). By using the fact $\frac{1}{g} \nabla \cdot g \mathbf{u}=0$, equation (5) implies that

$$
\frac{1}{g}(\nabla \cdot g \nabla q)=\frac{1}{g} \nabla \cdot g \mathbf{w} .
$$

Since $\mathbf{w} \in H_{1,1}$, we obtains

$$
\begin{equation*}
\frac{1}{g}(\nabla \cdot g \nabla q)=\frac{1}{g} \nabla g \cdot \mathbf{w}, \quad \text { for } \quad \mathbf{w} \in H_{1,1} . \tag{6}
\end{equation*}
$$

Then as we did in the proof of lemma 2.2, by using Lax-Milgram theorem, for given $\mathbf{w} \in H_{1,1}$, one can find a strong solution $\nabla q \in \mathcal{Z}$ of (6) with the following estimate,

$$
\begin{equation*}
\|\nabla q\| \leq \frac{\|\nabla g\|_{\infty}}{m}\|\mathbf{w}\| . \tag{7}
\end{equation*}
$$

Also we note that $I-K=P_{g_{\left.\right|_{1,1}}}$, where I is considered as the identity mapping on the space $H_{1,1}$. Therefore, from inequality (7), one has the operator norm of K by

$$
\left\|\left(I-P_{g}\right)_{\left.\right|_{H_{1,1}}}\right\|_{o p}=\|K\|_{o p} \leq \frac{\|\nabla g\|_{\infty}}{m} .
$$

For the operator $P_{g}-P_{1}: L_{p e r}^{2}(\Omega) \rightarrow L_{p e r}^{2}(\Omega)$, we have the following result concerning the operator norm $\left\|P_{g}-P_{1}\right\|_{o p}$.

Theorem 2.4. As $\|\nabla g\|_{\infty} \rightarrow 0$, we have $\left\|\left(P_{g}-P_{1}\right)_{L_{L^{2}}}\right\|_{o p} \rightarrow 0$.
Proof. For $\mathbf{u} \in L_{p e r}^{2}(\Omega)$ we obtain

$$
\mathbf{u}=\mathbf{v}_{g}+\nabla p_{g}, \quad \mathbf{u}=\mathbf{v}_{1}+\nabla p_{1}, \quad \mathbf{v}_{g}=P_{g} \mathbf{u}, \text { and } \mathbf{v}_{1}=P_{1} \mathbf{u}
$$

where $\mathbf{v}_{g} \in H_{g}, \mathbf{v}_{1} \in H_{1}$, and $\nabla p_{g}, \nabla p_{1} \in Q$. Since $\nabla \cdot \mathbf{v}_{1}=0$ and $\nabla \cdot g \mathbf{v}_{g}=0$, we have

$$
\Delta p_{1}=\nabla \cdot \mathbf{u}, \quad \Delta_{g} p_{g}=\frac{1}{g}(\nabla \cdot g \mathbf{u})=\nabla \cdot \mathbf{u}+\left(\frac{\nabla g}{g} \cdot \mathbf{u}\right),
$$

where $\Delta_{g} p_{g}=\Delta p_{g}+\left(\frac{\nabla g}{g} \cdot \nabla\right) p_{g}$. So, one obtains

$$
\Delta\left(p_{g}-p_{1}\right)=\frac{\nabla g}{g} \cdot \mathbf{u}-\left(\frac{\nabla g}{g} \cdot \nabla\right) p_{g}
$$

Let us denote $p=p_{g}-p_{1}$. Since we have $M_{1}(p)=0$, and $\left\|\nabla p_{g}\right\|_{g}^{2} \leq$ $\|\mathbf{u}\|_{g}^{2}$ which implies $m\left\|\nabla p_{g}\right\|^{2} \leq M\|\mathbf{u}\|^{2}$, due to Poincaré inequality we have some constant c such that

$$
\begin{aligned}
\left\|P_{g} \mathbf{u}-P_{1} \mathbf{u}\right\| & =\|\nabla p\| \leq\|p\|_{H^{2}} \\
& \leq c\left(\left\|\frac{\nabla g}{g}\right\|\left\|_{\infty}\right\| \mathbf{u}\|+\| \frac{\nabla g}{g}\left\|_{\infty}\right\| \nabla p_{g} \|\right) \\
& \leq c\left(1+\sqrt{\frac{M}{m}}\right)\left\|\frac{\nabla g}{g}\right\|_{\infty}\|\mathbf{u}\| .
\end{aligned}
$$

References

[1] J. Roh, Derivation of the g-Navier-Stokes equations, to appear in JCMS.
[2] A. W. Naylor and G. R. Sell, Linear operator theory in engineering and science, Applied Mathematical Sciences, 40. Springer-Verlag, New York, 1982.
[3] G. R. Sell and Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
*
Department of Mathematics
Hallym University
Chuncheon 200-702, Republic of Korea
E-mail: joroh@hallym.ac.kr

