ON STABILITY OF THE ORTHOGONALLY CUBIC TYPE FUNCTIONAL EQUATION

ICK-Soon Chang*

Abstract

In this article, we establish the stability of the orthogonally cubic type functional equation $2 f(x+2 y)+2 f(x-2 y)+$ $2 f(2 x)+7[f(x)+f(-x)]=4 f(x)+8[f(x+y)+f(x-y)], x \perp y$ in which \perp is the orthogonality in the sense in the Rätz.

1. Introduction

In 1940, S. M. Ulam [11] proposed the following question concerning the stability of group homomorphisms: Under what condtion does there is an additive mapping near an approximately additive mapping between a group and a metric group?

In next year, D. H. Hyers [5] answers the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th. M. Rassias [8]. Since then, the stability problems of various functional equation have been extensively investigated by a number of authors.

The cubic function $f(x)=a x^{3}$ satisfies the functional equation
(1) $f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x)$.

Hence, throughout this paper, we promise that the equation (1) is called a cubic functional equation and every solution of the equation (1) is said to be a cubic function. The functional equation (1) was solved by Jun and Kim [6]. Moreover, they investigated the Hyers-Ulam-Rassias stability for the functional equation (1).

Now we introduced the cubic type functional equation as follows:

$$
\begin{align*}
& 2 f(x+2 y)+2 f(x-2 y)+2 f(2 x)+7[f(x)+f(-x)] \tag{2}\\
& =4 f(x)+8[f(x+y)+f(x-y)]
\end{align*}
$$

It is easy to see that the function $f(x)=a x^{3}+b$ is a solution of the functional equation (2). The main goal of this note is to offer the stability of the orthogonally cubic type functional equation (2) for all x, y with $x \perp y$, where \perp is the orthogonality in the sense of R $\ddot{a} t z$.

2. Stability of Eq. (2)

Let us recall the orthogonality in the sense of J. Rätz [9]; Suppose that X is a real vector space with $\operatorname{dim} X \geq 2$ and \perp is a binary relation on X with the following properties:
(O1) totality of \perp for zero: $x \perp 0,0 \perp x$ for all $x \in X$;
(O2) independence: if $x \in X-\{0\}, x \perp y$, then x, y are linearly independent;
(O3) homogeneity: if $x \in X, x \perp y$, then $\alpha x \perp \beta y$ for all $\alpha, \beta \in \mathbb{R}$;
(O4) the Thalesian property: if P is a 2 -dimensional subspace of $X, x \in$ P and $\lambda \in \mathbb{R}_{+}$, then there exists $y_{0} \in P$ such that $x \perp y_{0}$ and $x+y_{0} \perp \lambda x-y_{0}$.
The pair (X, \perp) is called an orthogonality space. By an orthogonality normed space we mean an orthogonality space having a normed structure.

Definition 2.1. Let X and Y be an orthogonality and a real vector space. A mapping $f: X \rightarrow Y$ is said to orthogonally cubic if it satisfies the so-called orthogonally cubic functional equation (1) for all $x, y \in X$ with $x \perp y$.

Lemma 2.1. Let X and Y be an orthogonality and a real vector space. If a function $f: X \rightarrow Y$ satisfies the functional equation (2) for all $x \in X$ with $x \perp y$, if and only if C is orthogonally cubic, where $C: X \rightarrow Y$ is a function defined by $C(x)=f(x)-f(0)$ for all $x \in X$.

Proof. (Necessity.) From the assumption, it follows that

$$
\begin{align*}
& C(x+2 y)+C(x-2 y)+C(2 x)+\frac{7[C(x)+C(-x)]}{2} \tag{3}\\
& =2 C(x)+4[C(x+y)+C(x-y)]
\end{align*}
$$

for all $x, y \in X$ with $x \perp y$. In particular, $C(0)=0$. Observe that $x \perp 0$ for all $x \in X$. Putting $x=0$ in (3), we arrive at

$$
\begin{equation*}
C(2 y)+C(-2 y)=4[C(y)+C(-y)] . \tag{4}
\end{equation*}
$$

Letting $y=0$ in (3) gives the equation

$$
\begin{equation*}
C(2 x)=8 C(x)-\frac{7[C(x)+C(-x)]}{2} . \tag{5}
\end{equation*}
$$

Let us replace x by $-x$ in (5) and then we get

$$
\begin{equation*}
C(-2 x)=8 C(-x)-\frac{7[C(x)+C(-x)]}{2} \tag{6}
\end{equation*}
$$

By adding (5) and (6), we find that

$$
C(2 x)+C(-2 x)=C(x)+C(-x)
$$

and by comparing with (4), $C(-x)=-C(x)$. Therefore (3) now becomes

$$
\begin{align*}
& C(x+2 y)+C(x-2 y)+C(2 x)=2 C(x)+ \tag{7}\\
& 4[C(x+y)+C(x-y)]
\end{align*}
$$

for all $x, y \in X$ with $x \perp y$. Setting $y=0$ in (7) leads to the identity $C(2 x)=8 C(x)$. If $y \perp x$, then by (O3) $y \perp 2 x$. By replacing x by $2 x$ in (7), then we see that C is orthogonally cubic.
(Sufficiency.) Suppose that C is orthogonally cubic, i.e.,
(8) $C(2 x+y)+C(2 x-y)=2 C(x+y)+2 C(x-y)+12 C(x)$
for all $x, y \in X$ with $x \perp y$. Note that that $x \perp 0$ for all $x \in X$. If we take $x=y=0$ in (8), then it is clear that $C(0)=0$. Setting $x=0$ in (8) yields to $C(-y)=-C(y)$ and letting $y=0$ in (8), we obtain that $C(2 x)=8 C(x)$. If $x \perp y$, then by (O3) $x \perp 2 y$. Replacing y by $2 y$ in (8), we have

$$
C(x+2 y)+C(x-2 y)+C(2 x)=2 C(x)+4[C(x+y)+C(x-y)]
$$

Since C is an odd function, (3) holds for all $x, y \in X$ with $x \perp y$. So we see that a function f satisfies the functional equation (2) for all $x, y \in X$ with $x \perp y$. The proof of Lemma is complete.

From now on, let X be an orthogonality normed space and Y be a
Banach space. Given a mapping $f: X \rightarrow Y$, we set

$$
\begin{aligned}
& D f(x, y):=2 f(x+2 y)+2 f(x-2 y)+2 f(2 x)+7[f(x)+f(-x)] \\
& \quad-4 f(x)-8[f(x+y)+f(x-y)]
\end{aligned}
$$

Theorem 2.2. Suppose that $f: X \rightarrow Y$ is a mapping for which there exists a function $\phi: X^{2} \rightarrow[0, \infty)$ such that $\sum_{i=0}^{\infty} \frac{\phi\left(2^{i} x, 2^{i} y\right)}{8^{i}}$ converges and

$$
\begin{equation*}
\|D f(x, y)\| \leq \delta+\phi(x, y) \tag{9}
\end{equation*}
$$

for all $x, y \in X$ with $x \perp y$, where $\delta \geq 0$. Then there exists a unique orthogonally cubic function $C: X \rightarrow Y$ satisfying the inequality

$$
\begin{gather*}
\|f(x)-C(x)\| \leq \frac{1}{8}\left[\sum _ { i = 0 } ^ { \infty } \frac { 1 } { 8 ^ { i } } \left(\frac{9 \delta}{4}+\frac{13 \phi\left(2^{i} x, 0\right)}{12}\right.\right. \tag{10}\\
\left.\left.+\frac{7\left[\phi\left(-2^{i} x, 0\right)+\phi\left(0,2^{i} x\right)\right]}{12}\right)\right]+\|f(0)\|
\end{gather*}
$$

for all $x \in X$.
Proof. Let F be a function on X defined by $F(x)=f(x)-f(0)$ for all $x \in X$. Then $F(0)=0$. Note that $x \perp 0$ for all $x \in X$. Substitution of $x=0$ in (9) yields

$$
\begin{equation*}
\|F(2 y)+F(-2 y)-4[F(y)+F(-y)]\| \leq \frac{\delta+\phi(0, y)}{2} \tag{11}
\end{equation*}
$$

Next, we let $y=0$ in (9) to obtain

$$
\begin{equation*}
\left\|F(2 x)+\frac{7[F(x)+F(-x)]}{2}-8 F(x)\right\| \leq \frac{\delta+\phi(x, 0)}{2} \tag{12}
\end{equation*}
$$

Interchanging x with $-x$ in (12), we get
(13) $\left\|F(-2 x)+\frac{7[F(x)+F(-x)]}{2}-8 F(-x)\right\| \leq \frac{\delta+\phi(-x, 0)}{2}$.

It follows from (12) and (13) that

$$
\begin{align*}
& \|F(2 x)+F(-2 x)-[F(x)+F(-x)]\| \leq \delta \tag{14}\\
& \quad+\frac{\phi(x, 0)+\phi(-x, 0)}{2}
\end{align*}
$$

Combining (11) and (14), we see that

$$
\begin{equation*}
\|F(x)+F(-x)\| \leq \frac{\delta}{2}+\frac{\phi(x, 0)+\phi(-x, 0)+\phi(0, x)}{6} \tag{15}
\end{equation*}
$$

Thus, using (12) and (15), we find that

$$
\begin{align*}
& \left\|F(x)-\frac{F(2 x)}{8}\right\| \leq \frac{1}{8}\left[\frac{9 \delta}{4}+\frac{13 \phi(x, 0)}{12}\right. \tag{16}\\
& \left.\quad+\frac{7[\phi(-x, 0)+\phi(0, x)]}{12}\right] .
\end{align*}
$$

By replacing x by $2 x$ in (16) and dividing 8 and summing the resulting inequality with (16), then we get

$$
\begin{align*}
& \left\|F(x)-\frac{F\left(2^{2} x\right)}{8^{2}}\right\| \leq \frac{1}{8}\left[\frac{9 \delta}{4}+\frac{13 \phi(x, 0)}{12}+\frac{7[\phi(-x, 0)+\phi(0, x)]}{12}\right] \tag{17}\\
& \quad+\frac{1}{8^{2}}\left[\frac{9 \delta}{4}+\frac{13 \phi(2 x, 0)}{12}+\frac{7[\phi(-2 x, 0)+\phi(0,2 x)]}{12}\right]
\end{align*}
$$

An induction implies that

$$
\begin{align*}
& \left\|F(x)-\frac{F\left(2^{n} x\right)}{8^{n}}\right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{1}{8^{i}}\left[\frac{9 \delta}{4}+\frac{13 \phi\left(2^{i} x, 0\right)}{12}\right. \tag{18}\\
& \left.\quad+\frac{7\left[\phi\left(-2^{i} x, 0\right)+\phi\left(0,2^{i} x\right)\right]}{12}\right] .
\end{align*}
$$

In order to prove convergence of the sequence $\left\{\frac{F\left(2^{n} x\right)}{8^{n}}\right\}$, we divide inequality (18) by 8^{m} and also replace x by $2^{m} x$ to find that for $n>$ $m>0$,

$$
\begin{align*}
& \left\|\frac{F\left(2^{m} x\right)}{8^{m}}-\frac{F\left(2^{n} 2^{m} x\right)}{8^{n+m}}\right\| \leq \frac{1}{8^{m+1}} \sum_{i=0}^{n-1} \frac{1}{8^{i}}\left[\frac{9 \delta}{4}+\frac{13 \phi\left(2^{m+i} x, 0\right)}{12}\right. \tag{19}\\
& \left.\quad+\frac{7\left[\phi\left(-2^{m+i} x, 0\right)+\phi\left(0,2^{m+i} x\right)\right]}{12}\right]
\end{align*}
$$

Sine the right-hand side of the inequality (19) tends to 0 as $m \rightarrow \infty$, $\left\{\frac{F\left(2^{n} x\right)}{8^{n}}\right\}$ is Cauchy sequence. Therefore, we may define a function C : $X \rightarrow Y$ by $C(x):=\lim _{n \rightarrow \infty} \frac{F\left(2^{n} x\right)}{8^{n}}$ for all $x \in X$. By letting $n \rightarrow \infty$ in (18), we arrive at the formula (10).

Now we show that C satisfies the functional equation (2) for all $x, y \in$ X with $x \perp y$: If $x \perp y$, then by (O3) $2^{n} x \perp 2^{n} y$. Let us replace x and y by $2^{n} x$ and $2^{n} y$ in (9) and divide by 8^{n}. Then it follows that

$$
D C(x, y)=\lim _{n \rightarrow \infty} \frac{\left\|D F\left(2^{n} x, 2^{n} y\right)\right\|}{8^{n}} \leq \lim _{n \rightarrow \infty} \frac{\delta+\phi\left(2^{n} x, 2^{n} y\right)}{8^{n}}=0
$$

Hence we obtain the desired result. Since $C(0)=0$, the lemma 2.1 implies that C is an orthogonally cubic.

It only remains to claim that C is unique: Let us assume that there exists an orthogonally cubic function T which satisfies (2) and the inequality (10). It is clear that $C\left(2^{n} x\right)=8^{n} C(x)$ and $T\left(2^{n} x\right)=8^{n} T(x)$
for all $x \in X$ and $n \in \mathbb{N}$. Hence it follows from (10) that

$$
\begin{aligned}
& \|C(x)-T(x)\|=\frac{\left\|C\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|}{8^{n}} \\
& \quad \leq \frac{1}{8^{n}}\left[\left\|C\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|\right] \\
& \quad \leq \frac{1}{8^{n}}\left\{\frac{1}{4}\left[\sum_{i=0}^{\infty} \frac{1}{8^{i}}\left(\frac{9 \delta}{4}+\frac{13 \phi\left(2^{i} x, 0\right)}{12}+\frac{7\left[\phi\left(-2^{i} x, 0\right)+\phi\left(0,2^{i} x\right)\right]}{12}\right)\right]\right. \\
& \quad+2\|f(0)\|\}
\end{aligned}
$$

By letting $n \rightarrow \infty$, then we have $C(x)=T(x)$ for all $x \in X$, which completes the proof of the theorem.

Corollary 2.3. Let $p, q, \delta, \varepsilon_{1}$ and ε_{2} be nonnegative real numbers with $p<3$ and $q<3$. Suppose that $f: X \rightarrow Y$ is a mapping such that

$$
\|D f(x, y)\| \leq \delta+\varepsilon_{1}\|x\|^{p}+\varepsilon_{2}\|y\|^{q}
$$

for all $x, y \in X$ with $x \perp y$. Then there exists a unique orthogonally cubic function $C: X \rightarrow Y$ satisfying the inequality

$$
\|f(x)-C(x)\| \leq \frac{9 \delta}{28}+\frac{1}{8-2^{p}}\left[\frac{5}{3} \varepsilon_{1}\|x\|^{p}+\frac{7}{12} \varepsilon_{2}\|x\|^{q}\right]
$$

for all $x \in X$.
Proof. Considering $\phi(x, y)=\varepsilon_{1}\|x\|^{p}+\varepsilon_{2}\|y\|^{q}$ in the theorem 2.2, we arrive at the conclusion of the corollary.

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[2] I.-S. Chang, K.-W. Jun and Y.-S. Jung, The modified Hyers-Ulam-Rassias stability of a cubic type functional equation, Math. Ineq. Appl. 8(4) (2005), 675-683.
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
[6] K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274(2) (2002), 867-878.
[7] M. S. Moslehian, On stability of the orthogonal pexiderized Cauchy equation, J. Math. Anal. Appl. 318 (1) (2006), 211-223.
[8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[9] J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
[10] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[11] S. M. Ulam, Problems in Modern Mathematics, (1960) Chap. VI, Science ed., Wiley, New York.
*
Department of Mathematics
Mokwon University
Taejon 305-729, Republic of Korea
E-mail: ischang@mokwon.ac.kr

