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SQUARE ROOTS OF HOMEOMORPHISMS

Yoon Hoe Goo*

Abstract. In this paper, we study the condition that a given
homeomorphism has a square root and give an example of a wan-
dering homeomorphism without square roots.

1. Introduction

Let X be a topological space and let f : X → X be a homeomor-
phism. A homeomorphism g : X → X is called a square root of f if
g ◦ g = f. Although the square root is not unique in general, we always
denote g by

√
f.

For homeomorphisms of compact spaces, we can use the nonwander-
ing sets to show the non-existence of square roots as follows: Let f be
a homeomorphism. For any homeomorphism g, the nonwandering set
Ω(f) of f and the nonwandering set Ω(gfg−1) of gfg−1 satisfies the re-
lation g(Ω(f)) = Ω(gfg−1). Since the square root of f commutes with
f , Ω(f) is also invariant under the square root of f . By using this fact,
we will construct a homeomorphism which has no square roots.

The above argument cannot be applied to study the square roots of
homeomorphisms of non-compact spaces with empty nonwandering set.
Thus we will introduce positive and negative limit sets which replaces
the role of the nonwandering sets in the above argument. We recall some
definitions from [3]. In this paper, X will always be a first countable
hemicompact space unless stated otherwise. A topological space X is
said to be hemicompact if there exist countably many compact subsets
M1, M2, · · · of X such that for any compact subset M of X, there is a
positive integer n such that M ⊂ Mn. Let f be a homeomorphism of X.
For a compact subset M of X, we define its ω-limit(resp. α-limit) set by
ωf (M) =

⋂
n≥0

⋃
m≥n fm(M) (resp. αf (M) =

⋂
n≤0

⋃
m≤n fm(M)).

For a homeomorphism f of X, we define the positive (resp. negative)
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limit set of f by ω(f) =
⋃∞

i=1 ωf (Mi) (resp. α(f) =
⋃∞

i=1 αf (Mi)). By
using these sets, we study the condition that a given homeomorphism of
X has a square root and give an example of a wandering homeomorphism
without square roots.

2. Limit sets for square roots

We show that the square root of f is not unique in general.

Example 2.1. Let functions f, g and h be defined by f(x) = 4x + 3,
g(x) = 2x + 1 and h(x) = −2x − 3, respectively. Then f, g and h are
homeomorphisms. Since

g ◦ g(x) = 4x + 3 = f(x),
and h ◦ h(x) = 4x + 3 = f(x),

functions g, h are square roots of f .

Let X be a compact space and f a homeomorphism of X. Then the
nonwandering set Ω(f) of f is a nonempty set. For homeomorphisms of
compact spaces, we can use the nonwandering sets to show the existence
of square roots.

Theorem 2.2. Let h : X → X be a homeomorphism. Then we have
h(Ω(f)) = Ω(hfh−1).

Proof. Let x ∈ Ω(f). Then there are nets (xi) in X, (ni) in Z+ such
that

xi → x, ni →∞, fni(xi) → x.

Since h(xi) → h(x) and

(hfh−1)nih(xi) = hfnih−1h(xi) = hfni(xi) → h(x),

we have h(x) ∈ Ω(hfh−1). Thus h(Ω(f)) ⊂ Ω(hfh−1).
Let x ∈ Ω(hfh−1). Then there are nets (xi) in X, (ni) in Z+ such

that

xi → x, ni →∞, (hfh−1)ni(xi) → x.

Since h−1(xi) → h−1(x) and

fnih−1(xi) = h−1hfnih−1(xi) = h−1(hfh−1)ni(xi) → h−1(x),

we have h−1(x) ∈ Ω(f). Since x = hh−1(x) ∈ h(Ω(f)), we have Ω(hfh−1) ⊂
h(Ω(f)). Thus h(Ω(f)) = Ω(hfh−1). ¤
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Corollary 2.3. Let f be a homeomorphism of X. If g =
√

f, then
g(Ω(f)) = Ω(f).

Proof. Since g ◦ f = g ◦ (g ◦ g) = (g ◦ g) ◦ g = f ◦ g, by Theorem 2.2
we have g(Ω(f)) = Ω(gfg−1) = Ω(fgg−1) = Ω(f). ¤

By using Corollary 2.3, we can construct a homeomorphism which
has no square roots.

Example 2.4. Let X = {(x, y) ∈ R2 | |x| + y ≤ 1, y ≥ 0}. Define a
function f : X → X by f(0, 1) = (0, 1), and

f(x, y) =





(
1−√y

(1−y)2
x2,

√
y
)

, if x ≤ 0, 0 ≤ y < 1( √
y−1

(1−y)2
x2,

√
y
)

, if x ≥ 0, 0 ≤ y < 1.

We prove that f is a homeomorphism. First we show that f is continu-
ous. Let y − 1 ≤ x ≤ 0. Since 0 ≤ x2 ≤ (1− y)2, we have

0 ≤ 1−√y

(1− y)2
x2 ≤ 1−√y.

Since 1−√y → 0 as y → 1, we have

1−√y

(1− y)2
x2 → 0 as y → 1.

Let 0 ≤ x ≤ 1− y. Since 0 ≤ x2 ≤ (1− y)2, we have

√
y − 1 ≤

√
y − 1

(1− y)2
x2 ≤ 0.

Since
√

y − 1 → 0 as y → 1, we have
√

y − 1
(1− y)2

x2 → 0 as y → 1.

Hence f is continuous at (0, 1).

Also, define a function h : X → X by h(0, 1) = (0, 1), and

h(x, y) =





(
1−y2√
1−y

√−x, y2
)

, if x ≤ 0, 0 ≤ y < 1(
y2−1√
1−y

√
x, y2

)
, if x ≥ 0, 0 ≤ y < 1.

Then it is easy to show that h is continuous at (0, 1). Since h ◦ f(x) = x
and f ◦ h(x) = x, we have h = f−1. Thus f is a homeomorphism.

Let a = (0, 1), b = (−1, 0), c = (0, 0) and d = (1, 0). Then we
have f(a) = a, f(b) = d, f(c) = c, f(d) = b and Ω(f) = {a, b, c, d}.
Let g =

√
f. By Corollary 2.3, we have g({a, b, c, d}) = {a, b, c, d}. If
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g(b) = b, then d = f(b) = g2(b) = g(b) = b. If g(b) = d, then d = f(b) =
g2(b) = g(d). If g(d) = b, then b = f(d) = g2(d) = g(b). If g(d) = d, then
b = f(d) = g2(d) = g(d) = d. These four cases contradict. Thus we have
g(b) = a, g(d) = c, or g(b) = c, g(d) = a.

Let g(b) = a and g(d) = c. Then we have d = f(b) = g2(b) = g(a),
b = f(d) = g2(d) = g(c). This contradicts the fact that a = f(a) =
g2(a) = g(d) = c.

On the other hand, let g(b) = c and g(d) = a. Then we have d =
f(b) = g2(b) = g(c) and b = f(d) = g2(d) = g(a). Also, this contradicts
the fact that a = f(a) = g2(a) = g(b) = c. Hence there are no square
roots of f .

To prove Theorem 2.7, we need two lemmas.

Lemma 2.5. [3] Let f and h be homeomorphisms of X. For any com-
pact subset M of X, the following hold:

h(ωf (M)) = ωhfh−1(h(M))

and

h(αf (M)) = αhfh−1(h(M)).

Lemma 2.6. [3] (1) x ∈ ωf (M) if and only if there are sequences (xi)
in M and (ni) in Z+ such that ni →∞ and fni(xi) → x.

(2) x ∈ αf (M) if and only if there are sequences (xi) in M and (ni)
in Z− such that ni → −∞ and fni(xi) → x.

Theorem 2.7. Let f and g be homeomorphisms of X. If g =
√

f,
then g(ω(f)) = ω(f) and g(α(f)) = α(f).

Proof. First we show that g(ω(f)) = ω(f). Let {Mi} be a countable
collection of compact subsets of X satisfying the condition of hemicom-
pactness. Since g is a homeomorphism, the set g(Mi) is compact. For
any compact subset M of X, since g−1(M) is compact, there exists an
integer i such that g−1(M) ⊂ Mi and so we obtain M ⊂ g(Mi). By
Lemma 2.5, we have

g(ω(f)) = g
( ∞⋃

i=1

ωf (Mi)
)

=
∞⋃

i=1

g(ωf (Mi)) =
∞⋃

i=1

ωgfg−1(g(Mi))

=
∞⋃

i=1

ωf (g(Mi)) = ω(f).
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We can show g(α(f)) = α(f) in the same way. This completes the proof.
¤

By using Theorem 2.7, we can show the non-existence of a square
root in the non-compact space.

Example 2.8. Let X = {(x, y) ∈ R2 | − 1 ≤ y ≤ 1}. We take
the singular foliation F illustrated in Figure 1. In the region between
the two straight lines with thorns, the homeomorphism f preserves the
leaves of F . On the upper (resp. lower) straight line with thorns, f
maps each thorn to the next thorn on the right (resp. left) side. By
modifying f along the straight lines with thorns, we can construct a
homeomorphism of X preserving the leaves of F . Then ω(f) is the lower
straight line with thorns and α(f) is the upper one. If f has a square root
g, then ω(f) must be invariant under g by Theorem 2.7. Furthermore,
g maps the adjacent branch points of ω(f) on themselves because g
is a homeomorphism. Let n ≡ (n,−1). Then ω(f) = {n|n ∈ Z}. Let
g(0) = 0. Since −1 = f(0) = g2(0) = g(0) = 0, this contradicts. Next
let g(0) = n. Then we have

g(n) = g(g(0)) = f(0) = −1,

g(−1) = g(g(n)) = f(n) = n− 1,

g(n− 1) = g(g(−1)) = f(−1) = −2,

g(−2) = g(g(n− 1)) = f(n− 1) = n− 2, · · · ,

g(n) = −1 = n− (n + 1) = g(−(n + 1)).

This contradicts the fact that g is injective. Hence there are no square
roots of f .

Finally we give a relationship between the positive (negative) limit
set of f and that of

√
f.

Theorem 2.9. Let f and g be homeomorphisms of X. If g =
√

f,
then ω(f) = ω(g) and α(f) = α(g).

Proof. First we prove that ω(f) = ω(g). By hemicompactness of X,
there exists a countable collection {Mi} of compact subsets of X such
that for any compact subset M of X, there is a positive integer n such
that M ⊂ Mn. Let x ∈ ω(f). Then there is an integer i such that
x ∈ ωf (Mi). By Lemma 2.6, there are sequences (xn) in Mi and (mn)
in Z+ such that mn →∞ and fmn(xn) → x. Since 2mn →∞, we have
g2mn(xn) = fmn(xn) → x. It follows that x ∈ ωg(Mi) ⊂ ω(g). Thus we
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Figure 1

obtain ω(f) ⊂ ω(g). Next let x ∈ ω(g). Then there exists an integer i
such that x ∈ ωg(Mi). By Lemma 2.6, there are sequences (xn) in Mi

and (mn) in Z+ such that mn → ∞ and gmn(xn) → x. If infinitely
many mn are even, we may assume without loss of generality that all
mn is even. Since mn

2 →∞, we have

f
mn
2 (xn) = (g2)

mn
2 (xn) = gmn(xn) → x.

Thus x ∈ ωf (Mi) ⊂ ω(f). Similarly, if infinitely many mn are odd,
we can suppose without loss of generality that all mn is odd. Since
mn−1

2 →∞ and g(xn) ∈ g(Mi), we have

f
mn−1

2 g(xn) = (g2)
mn−1

2 g(xn) = gmn(xn) → x.

Thus we have

x ∈ ωf (g(Mi)) ⊂
∞⋃

i=1

ωf (g(Mi)) = ω(f),

and so ω(g) ⊂ ω(f). Hence we have ω(f) = ω(g).
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A similar argument shows that α(f) = α(g). This completes the
proof. ¤
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