ON EQUIVALENT NORMS TO BLOCH NORM IN \mathbb{C}^n

KI SEONG CHOI*

ABSTRACT. For $f \in L^2(B, d\nu)$, $|| f ||_{BMO} = |\widetilde{f}|^2(z) - |\widetilde{f}(z)|^2$. For f continuous on B, $|| f ||_{BO} = \sup\{w(f)(z) : z \in B\}$ where $w(f)(z) = \sup\{|f(z) - f(w)| : \beta(z, w) \leq 1\}$. In this paper, we will show that if $f \in BMO$, then $|| f ||_{BO} \leq M || f ||_{BMO}$. We will also show that if $f \in BO$, then $|| f ||_{BMO} \leq M || f ||_{BO}$. A holomorphic function $f : B \to \mathbb{C}$ is called a Bloch function $(f \in \mathcal{B})$ if $|| f ||_{BO} \leq || f ||_{\mathcal{B}}$. We will also show that if $f \in BMO$ and f is holomorphic, then $|| f ||_{BO} \leq M || f ||_{\mathcal{B}}$.

1. Introduction

Throughout this paper, \mathbb{C}^n will be the Cartesian product of n copies of \mathbb{C} . For $z = (z_1, z_2, \ldots, z_n)$ and $w = (w_1, w_2, \ldots, w_n)$ in \mathbb{C}^n , the inner product is defined by $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$ and the norm by $|z|^2 = \langle z, z \rangle$.

Let *B* be the open unit ball in the complex space \mathbb{C}^n . Let ν be the Lebesgue measure in \mathbb{C}^n normalized by $\nu(B) = 1$. Let $L^2_a(B)$ be the Bergman space of holomorphic functions in $L^2(B, d\nu)$. Fix a point $z \in B$. Since the functional e_z given by $e_z(f) = f(z), f \in L^2_a(B)$, is continuous, there exists a function $K(\cdot, z) \in L^2_a(B)$ such that

$$f(z) = \int_B f(w) \overline{K(w,z)} d\nu(w)$$

by the Riesz representation theorem. $K(\cdot, z)$ is called the Bergman reproducing kernel in $L^2_a(B)$. If $z, w \in B$, then

$$K(z,w) = \frac{n!}{\pi^n} \frac{1}{(1 - \langle z, w \rangle)^{n+1}}$$

(See [8, Theorem 1.4.21]).

Received September 24, 2006.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 32H25, 32E25, 30C40. Key words and phrases: Bergman metric, BO, BMO, Bloch space.

KI SEONG CHOI

The normalized (in $L^2_a(B)$) reproducing kernel is denoted by

$$k_z(\cdot) = K(z, z)^{-1/2} K(\cdot, z).$$

We define the Berezin transform of f in $L^2(B, d\nu)$ by

$$\tilde{f}(z) = \langle fk_z, k_z \rangle,$$

where $\langle \cdot, \cdot \rangle$ is the usual $L^2(B, d\nu)$ inner product and $|| f ||^2 = \langle f, f \rangle$. Using the boundedness of the k_z , the Berezin transform extends to all $f \in L^1(B, d\nu)$ by the formula

$$\tilde{f}(z) = \frac{1}{K(z,z)} \int_B |K(z,w)|^2 f(w) d\nu(w).$$

Let BC(B) denote the algebra of bounded continuous functions on B. For f in $L^2(B, d\nu)$, the quantity

$$\widetilde{|f|^2}(z) - |\widetilde{f}(z)|^2$$

is a continuous function on B. We denote $f \in BMO$ if $|\widetilde{f}|^2(z) - |\widetilde{f}(z)|^2$ is in BC(B) as a function of z. For any subset S of B, we write

$$\| f \|_{BMO(S)} \equiv \sup\{ \widetilde{|f|^2}(z) - |\widetilde{f}(z)|^2 : z \in S \}$$

and

$$\| f \|_{BMO} \equiv \| f \|_{BMO(B)} .$$

BMO in the Bergman metric was first exhibited in [2] and [3] where BMO was used to characterize the boundedness of Hankel operators on the Bergman spaces.

 β is the Bergman metric on B(See [1],[4] and [6]). For f continuous on B, we define

$$w(f)(z) = \sup\{|f(z) - f(w)| : \beta(z, w) \le 1\}.$$

w(f)(z) is called the oscillation of f at z in the Bergman metric. We say f is of bounded oscillation $(f \in BO(B))$ if w(f)(z) is in BC(B) (as a function of z). We write

$$|| f ||_{BO} = \sup\{w(f)(z) : z \in B\}$$

In Section 2, we will show that if $f \in BMO$, then $|| f ||_{BO} \leq M_1 ||$ $f ||_{BMO}$ for some constant M_1 . We will also show that if $f \in BO$, then $|| f ||_{BMO} \leq M_2 || f ||_{BO}^2$ for some constant M_2 .

For $z \in B, \xi \in \mathbb{C}^n$, set

$$b_B{}^2(z,\xi) = \frac{n+1}{(1-|z|^2)^2} [(1-|z|^2)|\xi|^2 + |\langle z,\xi \rangle|^2]$$

Let H(B) be the space of all holomorphic functions in B. If $f \in H(B)$, where H(B) is the set of holomorphic functions on B, then the quantity Q_f is defined by

$$Q_f(z) = \sup_{|\xi|=1} \frac{|\nabla f(z) \cdot \xi|}{b_B(z,\xi)}, \quad z \in B, \quad \xi \in \mathbb{C}^n ,$$

where $\nabla f(z) = \left(\frac{\partial f(z)}{\partial z_1}, \cdots, \frac{\partial f(z)}{\partial z_n}\right)$ is the holomorphic gradient of f(See [1],[5],[6],[7] and [10]). A holomorphic function $f: B \to \mathbb{C}$ is called a Bloch function $(f \in \mathcal{B})$ if

$$\| f \|_{\mathcal{B}} = \sup_{z \in B} Q_f(z) < \infty .$$

Bloch functions on bounded homogeneous domains were first studied in [6]. In [10], Timoney showed that the linear space of all holomorphic functions $f: B \to \mathbb{C}$ which satisfy

$$\parallel f \parallel_{\mathcal{B}} = \sup_{z \in B} (1 - |z|^2) \parallel \nabla f(z) \parallel < \infty$$

is equivalent to the space \mathcal{B} of Bloch functions on B.

The theory for the space \mathcal{B} of Bloch functions on B was extended to the weighted Bloch space in [4],[5] and [7]. In Section 3, we will show that if

 $f \in \mathcal{B}$, then $|| f ||_{BO} \leq || f ||_{\mathcal{B}}$ and that if $f \in BMO$ and f is holomorphic, then $|| f ||_{\mathcal{B}}^2 \leq M || f ||_{BMO}$ for some constant M.

2. Relationship between $|| f ||_{BMO}$ and $|| f ||_{BO}^2$

Let $a \in B$ and P_a be the orthogonal projection of \mathbb{C}^n onto the subspace generated by a, which is given by $P_0 = 0$, and

$$P_a z = \frac{\langle z, a \rangle}{\langle a, a \rangle} a, \quad if \quad a \neq 0.$$

Let $Q_a = I - P_a$. Define φ_a on B by

$$\varphi_a(z) = \frac{a - P_a z - \sqrt{1 - |a|^2} Q_a z}{1 - \langle z, a \rangle}.$$

 φ_a belongs to the group Aut(B) of holomorphic automorphisms of B and satisfies $\varphi_a(0) = a, \varphi_a(a) = 0$ and $\varphi_a(\varphi_a(z)) = z$ (See [10, Theorem2.2.2]).

Theorem 1. Let $z \in B$. Let $J_C \varphi_z$ be the determinant of the complex Jacobian of φ_z . Then

$$|J_C\varphi_z(w)|^2 = |k_z(w)|^2.$$

Proof. See [9, Theorem 2.2.6].

Theorem 2. For $f \in L^2(B, d\nu)$,

$$\widetilde{|f|^2}(z) - |\widetilde{f}(z)|^2 = \frac{1}{2} \int_B \int_B |(f \circ \varphi_z)(u) - (f \circ \varphi_z)(w)|^2 d\nu(u) d\nu(w).$$

Proof.

$$\begin{split} &2(\widetilde{|f|^2}(z) - |\tilde{f}(z)|^2) \\ &= \widetilde{|f|^2}(z) - \int_B f(u)|k_z(u)|^2 d\nu(u) \int_B \overline{f(w)}|k_z(w)|^2 d\nu(w) \\ &- \int_B \overline{f(u)}|k_z(u)|^2 d\nu(u) \int_B f(w)|k_z(w)|^2 d\nu(w) + \widetilde{|f|^2}(z) \\ &= \int_B \int_B (|f(u)|^2 - f(u)\overline{f(w)} - \overline{f(u)}f(w) \\ &+ |f(w)|^2)|k_z(u)|^2|k_z(w)|^2 d\nu(u) d\nu(w) \\ &= \int_B \int_B |f(u) - f(w)|^2|k_z(u)|^2|k_z(w)|^2 d\nu(u) d\nu(w). \end{split}$$

By Theorem 1,

$$\begin{split} &\int_B \int_B |f(u) - f(w)|^2 |k_z(u)|^2 |k_z(w)|^2 d\nu(u) d\nu(w) \\ &= \int_B \int_B |f(u)\overline{f(u)} - f(u)\overline{f(w)} \\ &\quad -\overline{f(u)}f(w) - f(w)\overline{f(w)}|^2 |k_z(u)|^2 |k_z(w)|^2 d\nu(u) d\nu(w) \\ &= \int_B \int_B \{f(\varphi_z(u))\overline{f(\varphi_z(u))} - f(\varphi_z(u))\overline{f(w)} \\ &\quad -\overline{f(\varphi_z(u))}f(\varphi_z(w)) - f(\varphi_z(w))\overline{f(\varphi_z(w))}\} d\nu(u) d\nu(w) \\ &= \int_B \int_B |(f \circ \varphi_z)(u) - (f \circ \varphi_z)(w)|^2 d\nu(u) d\nu(w). \end{split}$$

Theorem 3. The function $\beta(0, \cdot)$ is in $L^p(B, d\nu)$ for all p > 0.

Proof. See [3, Theorem E].

Lemma 4. For fixed r > 0 and continuous f such that

$$\sup\{|f(z) - f(w)| : \beta(z, w) \le r\} = c(r, f),$$

we have

$$|f(z) - f(w)| \le c(f, r)[1 + r^{-1}\beta(z, w)]$$

for all $z, w \in B$.

Proof. See [3, Lemma 12].

Theorem 5. $|| f ||_{BMO} \le M || f ||_{BO}^2$ for some constant M.

Proof. By the proof of Theorem 2,

$$\widetilde{|f|^2(z)} - |\tilde{f}(z)|^2 = \frac{1}{2} \int_B \int_B |f(u) - f(w)|^2 |k_z(u)|^2 |k_z(w)|^2 d\nu(w) d\nu(w).$$

Since, by Lemma 4,

$$|f(u) - f(w)| = ||f||_{BO} (\beta(u, w) + 1),$$

$$\begin{split} \widetilde{|f|^2}(z) &- |\widetilde{f}(z)|^2 \\ &= \frac{1}{2} \parallel f \parallel_{BO}^2 \int_B \int_B (\beta(u, w) + 1)^2 |k_z(u)|^2 |k_z(w)|^2 d\nu(w) d\nu(w) \\ &= \frac{1}{2} \parallel f \parallel_{BO}^2 \int_B \int_B (\beta(\varphi_z(u), \varphi_z(w)) + 1)^2 d\nu(w) d\nu(w) \\ &\leq \frac{1}{2} \parallel f \parallel_{BO}^2 \int_B \int_B (\beta(u, w) + 1)^2 d\nu(w) d\nu(w) \\ &\leq M \parallel f \parallel_{BO}^2 \end{split}$$

where the last inequality follows from Theorem 3. This implies that

$$\| f \|_{BMO} = \sup\{ |\widetilde{f}|^2(z) - |\widetilde{f}(z)|^2 : z \in B \} \le M \| f \|_{BO}^2.$$

Theorem 6. If $f \in BMO$, then

$$|\tilde{f}(a) - \tilde{f}(b)| \le M \parallel f \parallel_{BMO} \beta(a, b)$$

for some constant M.

Proof. See [3, Corollary 1].

330

Theorem 7. If $f \in BMO$ is holomorphic, then

$$|| f ||_{BO} \leq M || f ||_{BMO} .$$

for some constant M.

Proof. Since f is holomorphic, $\tilde{f} = f$. By Theorem 6,

$$\| f \|_{BO} \leq M \| f \|_{BMO} .$$

3. Equivalent norms to $|| f ||_{\mathcal{B}}$

Theorem 8. For $f \in L^2_a(B)$, if γ is a geodesic of length $\beta(z, w)$ joining z to w, then

$$|f(z) - f(w)| \le \{\sup_{a \in \gamma} Q_f(a)\}\beta(z, w).$$

Proof. See [10, I].

Theorem 9. If $f \in \mathcal{B}$, then

$$\|f\|_{BO} \leq \|f\|_{\mathcal{B}}.$$

Proof. This follows from Theorem 8.

Lemma 10. If f is in $L^2_a(B)$,

$$|\nabla (f \circ \varphi_a)(0)|^2 \le n(n+1)^2 || f(a) - f \circ \varphi_a ||_{L^2}^2.$$

Proof. Let $g \in L^2_a(B)$. Then

$$g(z) = \int_B g(w) K(z, w) d\nu(w)$$
$$= \frac{n!}{\pi^n} \int_B \frac{g(w)}{(1 - \langle z, w \rangle)^{n+1}} d\nu(w).$$

331

$$\frac{\partial g}{\partial z_i}(z) = (n+1) \int_B \frac{\overline{w_i}g(w)}{(1-\langle z,w\rangle)^{n+2}} d\nu(w).$$
$$\left|\frac{\partial g}{\partial z_i}(0)\right| \le (n+1) \int_B |g(w)| d\nu(w).$$

Replacing g by g - g(0) yields

$$\begin{aligned} \left| \frac{\partial g}{\partial z_i}(0) \right| &\leq (n+1) \int_B |g(w) - g(0)| d\nu(w) \\ &\leq (n+1) \left(\int_B d\nu(w) \right)^{1/2} \left(\int_B |g(w) - g(0)|^2 d\nu(w) \right)^{1/2} \\ &= (n+1) \left(\int_B |g(w) - g(0)|^2 d\nu(w) \right)^{1/2}. \end{aligned}$$

$$|\nabla g(0)|^2 = \sum_{i=1}^n \left| \frac{\partial g}{\partial z_i}(0) \right|^2 \le n(n+1)^2 \int_B |g(w) - g(0)|^2 d\nu(w).$$

Replacing g by $f \circ \varphi_a$, we have

$$|\nabla (f \circ \varphi_a)(0)|^2 \le n(n+1)^2 \parallel f(a) - f \circ \varphi_a \parallel_{L^2}^2.$$

Theorem 11. For all φ_a in Aut(B),

$$Q_f(\varphi_a(z)) = Q_{f \circ \varphi_a}(z).$$

Proof. See [10, Remark 4.4].

Theorem 12. If $f \in BMO$ is holomorphic,

$$\|f\|_{\mathcal{B}}^2 \leq M \|f\|_{BMO}.$$

Proof. By Theorem 11,

$$Q_f(a) = Q_f(\varphi_a(0)) = Q_{f \circ \varphi_a}(0).$$

From the definition of $Q_f(z)$ and Lemma 10,

$$Q_f(a) \le A |\nabla (f \circ \varphi_a)(0)| \le B \parallel f(a) - f \circ \varphi_a \parallel_{L^2}$$

for some constants A and B. Since

$$\begin{split} \widetilde{|f|^2}(z) &- |\widetilde{f}(z)|^2 \\ &= \widetilde{|f|^2}(z) - f(z)\overline{f(z)} - \overline{f(z)}f(z) - |\widetilde{f}(z)|^2 \\ &= \int_B |(f \circ \varphi_z)(w)|^2 - (f \circ \varphi_z)(w)\overline{f(z)} \\ &- \overline{(f \circ \varphi_z)(w)}f(z) + |f(z)|^2)d\nu(w) \\ &= \int_B |f \circ \varphi_z(w) - f(z)|^2d\nu(w), \\ &\qquad Q_f(z)^2 \leq \widetilde{|f|^2}(z) - |\widetilde{f}(z)|^2. \end{split}$$

This implies that

$$\| f \|_{\mathcal{B}}^{2} = \sup_{z \in B} Q_{f}(z)^{2} \le \sup\{ |\widetilde{f}|^{2}(z) - |\widetilde{f}(z)|^{2} : z \in B \} = M \| f \|_{BMO} .$$

References

- S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
- C. A. Berger, L. A. Coburn and K. H. Zhu, BMO on the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. 17 (1987), 133-136.
- D. Bekolle, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350.
- 4. K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathcal{B}_q , J. Korean Math. Soc. **39** (2002), 277-287.
- 5. K. S. Choi, Little Hankel operators on Weighted Bloch spaces \mathcal{B}_q , C. Korean Math. Soc. 18 (2003), 469-479.
- K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458.

KI SEONG CHOI

- 7. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^n , J. Korean Math. Soc. **35** (1998), 171-189.
- 8. S. Krantz, *Function theory of several complex variables, 2nd ed.*, Wadsworth & Brooks /Cole Math. Series, Pacific Grove, CA.
- 9. W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York 1980.
- R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc 12(1980), 241-267.
- 11. K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York 1990.

*

DEPARTMENT OF INFORMATION SECURITY KONYANG UNIVERSITY NONSAN 320-711, REPUBLIC OF KOREA

 $E\text{-}mail: \ \texttt{ksc}\texttt{Qkonyang.ac.kr}$