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ON EQUIVALENT NORMS TO BLOCH NORM IN Cn

Ki Seong Choi*

Abstract. For f ∈ L2(B, dν), ‖ f ‖BMO= |̃f |2(z) − |f̃(z)|2. For f
continuous on B, ‖ f ‖BO= sup{w(f)(z) : z ∈ B} where w(f)(z) =
sup{|f(z) − f(w)| : β(z, w) ≤ 1}. In this paper, we will show that if
f ∈ BMO, then ‖ f ‖BO≤ M ‖ f ‖BMO. We will also show that if
f ∈ BO, then ‖ f ‖BMO≤ M ‖ f ‖2BO. A holomorphic function f : B → C
is called a Bloch function (f ∈ B) if ‖ f ‖B= supz∈B Qf(z) < ∞. In this
paper, we will show that if f ∈ B, then ‖ f ‖BO≤‖ f ‖B. We will also show
that if f ∈ BMO and f is holomorphic, then ‖ f ‖2B≤ M ‖ f ‖BMO.

1. Introduction

Throughout this paper, Cn will be the Cartesian product of n copies of C.

For z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) in Cn, the inner product

is defined by < z, w >=
∑n

j=1 zjwj and the norm by |z|2 =< z, z >.

Let B be the open unit ball in the complex space Cn. Let ν be the

Lebesgue measure in Cn normalized by ν(B) = 1. Let L2
a(B) be the

Bergman space of holomorphic functions in L2(B, dν). Fix a point z ∈ B.

Since the functional ez given by ez(f) = f(z), f ∈ L2
a(B), is continuous,

there exists a function K(·, z) ∈ L2
a(B) such that

f(z) =
∫

B

f(w)K(w, z)dν(w)

by the Riesz representation theorem. K(·, z) is called the Bergman repro-

ducing kernel in L2
a(B). If z, w ∈ B, then

K(z, w) =
n!
πn

1
(1− 〈z, w〉)n+1

(See [8, Theorem 1.4.21]).
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The normalized(in L2
a(B)) reproducing kernel is denoted by

kz(·) = K(z, z)−1/2K(·, z).

We define the Berezin transform of f in L2(B, dν) by

f̃(z) = 〈fkz, kz〉,

where 〈·, ·〉 is the usual L2(B, dν) inner product and ‖ f ‖2= 〈f, f〉. Us-

ing the boundedness of the kz, the Berezin transform extends to all f ∈
L1(B, dν) by the formula

f̃(z) =
1

K(z, z)

∫

B

|K(z, w)|2f(w)dν(w).

Let BC(B) denote the algebra of bounded continuous functions on B.

For f in L2(B, dν), the quantity

|̃f |2(z)− |f̃(z)|2

is a continuous function on B. We denote f ∈ BMO if |̃f |2(z) − |f̃(z)|2 is

in BC(B) as a function of z. For any subset S of B, we write

‖ f ‖BMO(S)≡ sup{|̃f |2(z)− |f̃(z)|2 : z ∈ S}

and

‖ f ‖BMO≡‖ f ‖BMO(B) .

BMO in the Bergman metric was first exhibited in [2] and [3] where BMO

was used to characterize the boundedness of Hankel operators on the Bergman

spaces.

β is the Bergman metric on B(See [1],[4] and [6]). For f continuous on

B, we define

w(f)(z) = sup{|f(z)− f(w)| : β(z, w) ≤ 1}.
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w(f)(z) is called the oscillation of f at z in the Bergman metric. We say f

is of bounded oscillation(f ∈ BO(B)) if w(f)(z) is in BC(B)(as a function

of z). We write

‖ f ‖BO= sup{w(f)(z) : z ∈ B}.
In Section 2, we will show that if f ∈ BMO, then ‖ f ‖BO≤ M1 ‖

f ‖BMO for some constant M1. We will also show that if f ∈ BO, then

‖ f ‖BMO≤ M2 ‖ f ‖2BO for some constant M2.

For z ∈ B, ξ ∈ Cn, set

bB
2(z, ξ) =

n + 1
(1− |z|2)2 [ (1− |z|2)|ξ|2 + | < z, ξ > |2 ] .

Let H(B) be the space of all holomorphic functions in B. If f ∈ H(B),

where H(B) is the set of holomorphic functions on B, then the quantity Qf

is defined by

Qf (z) = sup
|ξ|=1

|Of(z) · ξ|
bB(z, ξ)

, z ∈ B, ξ ∈ Cn ,

where Of(z) =
(

∂f(z)
∂z1

, · · · , ∂f(z)
∂zn

)
is the holomorphic gradient of f(See

[1],[5],[6],[7] and [10]). A holomorphic function f : B → C is called a Bloch

function (f ∈ B) if

‖ f ‖B= sup
z∈B

Qf (z) < ∞ .

Bloch functions on bounded homogeneous domains were first studied in

[6]. In [10], Timoney showed that the linear space of all holomorphic func-

tions f : B → C which satisfy

‖ f ‖B= sup
z∈B

(1− |z|2) ‖ Of(z) ‖ < ∞

is equivalent to the space B of Bloch functions on B.

The theory for the space B of Bloch functions on B was extended to the

weighted Bloch space in [4],[5] and [7]. In Section 3, we will show that if
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f ∈ B, then ‖ f ‖BO≤‖ f ‖B and that if f ∈ BMO and f is holomorphic,

then ‖ f ‖2B≤ M ‖ f ‖BMO for some constant M .

2. Relationship between ‖ f ‖BMO and ‖ f ‖2BO

Let a ∈ B and Pa be the orthogonal projection of Cn onto the subspace

generated by a, which is given by P0 = 0, and

Paz =
< z, a >

< a, a >
a, if a 6= 0.

Let Qa = I − Pa. Define ϕa on B by

ϕa(z) =
a− Paz −

√
1− |a|2Qaz

1− < z, a >
.

ϕa belongs to the group Aut(B) of holomorphic automorphisms of B and

satisfies ϕa(0) = a, ϕa(a) = 0 and ϕa(ϕa(z)) = z(See [10, Theorem2.2.2]).

Theorem 1. Let z ∈ B. Let JCϕz be the determinant of the complex

Jacobian of ϕz. Then

|JCϕz(w)|2 = |kz(w)|2.

Proof. See [9, Theorem 2.2.6]. ¤

Theorem 2. For f ∈ L2(B, dν),

|̃f |2(z)− |f̃(z)|2 =
1
2

∫

B

∫

B

|(f ◦ ϕz)(u)− (f ◦ ϕz)(w)|2dν(u)dν(w).
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Proof.

2(|̃f |2(z)− |f̃(z)|2)

= |̃f |2(z)−
∫

B

f(u)|kz(u)|2dν(u)
∫

B

f(w)|kz(w)|2dν(w)

−
∫

B

f(u)|kz(u)|2dν(u)
∫

B

f(w)|kz(w)|2dν(w) + |̃f |2(z)

=
∫

B

∫

B

(|f(u)|2 − f(u)f(w)− f(u)f(w)

+ |f(w)|2)|kz(u)|2|kz(w)|2dν(u)dν(w)

=
∫

B

∫

B

|f(u)− f(w)|2|kz(u)|2|kz(w)|2dν(u)dν(w).

By Theorem 1,

∫

B

∫

B

|f(u)− f(w)|2|kz(u)|2|kz(w)|2dν(u)dν(w)

=
∫

B

∫

B

|f(u)f(u)− f(u)f(w)

− f(u)f(w)− f(w)f(w)|2|kz(u)|2|kz(w)|2dν(u)dν(w)

=
∫

B

∫

B

{f(ϕz(u))f(ϕz(u))− f(ϕz(u))f(w)

− f(ϕz(u))f(ϕz(w))− f(ϕz(w))f(ϕz(w))}dν(u)dν(w)

=
∫

B

∫

B

|(f ◦ ϕz)(u)− (f ◦ ϕz)(w)|2dν(u)dν(w).

¤

Theorem 3. The function β(0, ·) is in Lp(B, dν) for all p > 0.

Proof. See [3, Theorem E]. ¤

Lemma 4. For fixed r > 0 and continuous f such that

sup{|f(z)− f(w)| : β(z, w) ≤ r} = c(r, f),

we have

|f(z)− f(w)| ≤ c(f, r)[1 + r−1β(z, w)]
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for all z, w ∈ B.

Proof. See [3, Lemma 12]. ¤

Theorem 5. ‖ f ‖BMO≤ M ‖ f ‖2BO for some constant M .

Proof. By the proof of Theorem 2,

|̃f |2(z)− |f̃(z)|2

=
1
2

∫

B

∫

B

|f(u)− f(w)|2|kz(u)|2|kz(w)|2dν(w)dν(w).

Since, by Lemma 4,

|f(u)− f(w)| =‖ f ‖BO (β(u,w) + 1),

|̃f |2(z)− |f̃(z)|2

=
1
2
‖ f ‖2BO

∫

B

∫

B

(β(u,w) + 1)2|kz(u)|2|kz(w)|2dν(w)dν(w)

=
1
2
‖ f ‖2BO

∫

B

∫

B

(β(ϕz(u), ϕz(w)) + 1)2dν(w)dν(w)

≤ 1
2
‖ f ‖2BO

∫

B

∫

B

(β(u,w) + 1)2dν(w)dν(w)

≤ M ‖ f ‖2BO

where the last inequality follows from Theorem 3. This implies that

‖ f ‖BMO= sup{|̃f |2(z)− |f̃(z)|2 : z ∈ B} ≤ M ‖ f ‖2BO .

¤

Theorem 6. If f ∈ BMO, then

|f̃(a)− f̃(b)| ≤ M ‖ f ‖BMO β(a, b)

for some constant M .

Proof. See [3, Corollary 1]. ¤
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Theorem 7. If f ∈ BMO is holomorphic, then

‖ f ‖BO≤ M ‖ f ‖BMO .

for some constant M .

Proof. Since f is holomorphic, f̃ = f . By Theorem 6,

‖ f ‖BO≤ M ‖ f ‖BMO .

¤

3. Equivalent norms to ‖ f ‖B
Theorem 8. For f ∈ L2

a(B), if γ is a geodesic of length β(z, w) joining

z to w, then

|f(z)− f(w)| ≤ {sup
a∈γ

Qf (a)}β(z, w).

Proof. See [10, I]. ¤

Theorem 9. If f ∈ B, then

‖ f ‖BO≤‖ f ‖B .

Proof. This follows from Theorem 8. ¤

Lemma 10. If f is in L2
a(B),

|∇(f ◦ ϕa)(0)|2 ≤ n(n + 1)2 ‖ f(a)− f ◦ ϕa ‖2L2 .

Proof. Let g ∈ L2
a(B). Then

g(z) =
∫

B

g(w)K(z, w)dν(w)

=
n!
πn

∫

B

g(w)
(1− 〈z, w〉)n+1

dν(w).
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∂g

∂zi
(z) = (n + 1)

∫

B

wig(w)
(1− 〈z, w〉)n+2

dν(w).

∣∣∣∣
∂g

∂zi
(0)

∣∣∣∣ ≤ (n + 1)
∫

B

|g(w)|dν(w).

Replacing g by g − g(0) yields

∣∣∣∣
∂g

∂zi
(0)

∣∣∣∣ ≤ (n + 1)
∫

B

|g(w)− g(0)|dν(w)

≤ (n + 1)
(∫

B

dν(w)
)1/2 (∫

B

|g(w)− g(0)|2dν(w)
)1/2

= (n + 1)
(∫

B

|g(w)− g(0)|2dν(w)
)1/2

.

|∇g(0)|2 =
n∑

i=1

∣∣∣∣
∂g

∂zi
(0)

∣∣∣∣
2

≤ n(n + 1)2
∫

B

|g(w)− g(0)|2dν(w).

Replacing g by f ◦ ϕa, we have

|∇(f ◦ ϕa)(0)|2 ≤ n(n + 1)2 ‖ f(a)− f ◦ ϕa ‖2L2 .

¤

Theorem 11. For all ϕa in Aut(B),

Qf (ϕa(z)) = Qf◦ϕa(z).

Proof. See [10, Remark 4.4].

¤

Theorem 12. If f ∈ BMO is holomorphic,

‖ f ‖2B≤ M ‖ f ‖BMO .

Proof. By Theorem 11,
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Qf (a) = Qf (ϕa(0)) = Qf◦ϕa(0).

From the definition of Qf (z) and Lemma 10,

Qf (a) ≤ A|∇(f ◦ ϕa)(0)| ≤ B ‖ f(a)− f ◦ ϕa ‖L2

for some constants A and B. Since

|̃f |2(z)− |f̃(z)|2

= |̃f |2(z)− f(z)f(z)− f(z)f(z)− |f̃(z)|2

=
∫

B

|(f ◦ ϕz)(w)|2 − (f ◦ ϕz)(w)f(z)

− (f ◦ ϕz)(w)f(z) + |f(z)|2)dν(w)

=
∫

B

|f ◦ ϕz(w)− f(z)|2dν(w),

Qf (z)2 ≤ |̃f |2(z)− |f̃(z)|2.

This implies that

‖ f ‖2B= sup
z∈B

Qf (z)2 ≤ sup{|̃f |2(z)− |f̃(z)|2 : z ∈ B} = M ‖ f ‖BMO .

¤
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