# ON EQUIVALENT NORMS TO BLOCH NORM IN $\mathbb{C}^{n}$ 

Ki Seong Chor*


#### Abstract

For $f \in L^{2}(B, d \nu),\|f\|_{B M O}=\widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2}$. For $f$ continuous on $B,\|f\|_{B O}=\sup \{w(f)(z): z \in B\}$ where $w(f)(z)=$ $\sup \{|f(z)-f(w)|: \beta(z, w) \leq 1\}$. In this paper, we will show that if $f \in B M O$, then $\|f\|_{B O} \leq M\|f\|_{B M O}$. We will also show that if $f \in B O$, then $\|f\|_{B M O} \leq M\|f\|_{B O}^{2}$. A holomorphic function $f: B \rightarrow \mathbb{C}$ is called a Bloch function $(f \in \mathcal{B})$ if $\|f\|_{\mathcal{B}}=\sup _{z \in B} Q f(z)<\infty$. In this paper, we will show that if $f \in \mathcal{B}$, then $\|f\|_{B O} \leq\|f\|_{\mathcal{B}}$. We will also show that if $f \in B M O$ and $f$ is holomorphic, then $\|f\|_{\mathcal{B}}^{2} \leq M\|f\|_{B M O}$.


## 1. Introduction

Throughout this paper, $\mathbb{C}^{n}$ will be the Cartesian product of $n$ copies of $\mathbb{C}$. For $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in $\mathbb{C}^{n}$, the inner product is defined by $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}$ and the norm by $|z|^{2}=\langle z, z\rangle$.

Let $B$ be the open unit ball in the complex space $\mathbb{C}^{n}$. Let $\nu$ be the Lebesgue measure in $\mathbb{C}^{n}$ normalized by $\nu(B)=1$. Let $L_{a}^{2}(B)$ be the Bergman space of holomorphic functions in $L^{2}(B, d \nu)$. Fix a point $z \in B$. Since the functional $e_{z}$ given by $e_{z}(f)=f(z), f \in L_{a}^{2}(B)$, is continuous, there exists a function $K(\cdot, z) \in L_{a}^{2}(B)$ such that

$$
f(z)=\int_{B} f(w) \overline{K(w, z)} d \nu(w)
$$

by the Riesz representation theorem. $K(\cdot, z)$ is called the Bergman reproducing kernel in $L_{a}^{2}(B)$. If $z, w \in B$, then

$$
K(z, w)=\frac{n!}{\pi^{n}} \frac{1}{(1-\langle z, w\rangle)^{n+1}}
$$

(See [8, Theorem 1.4.21]).

Received September 24, 2006.
2000 Mathematics Subject Classifications: Primary 32H25, 32E25, 30C40.
Key words and phrases: Bergman metric, BO, BMO, Bloch space.

The normalized(in $\left.L_{a}^{2}(B)\right)$ reproducing kernel is denoted by

$$
k_{z}(\cdot)=K(z, z)^{-1 / 2} K(\cdot, z)
$$

We define the Berezin transform of $f$ in $L^{2}(B, d \nu)$ by

$$
\tilde{f}(z)=\left\langle f k_{z}, k_{z}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the usual $L^{2}(B, d \nu)$ inner product and $\|f\|^{2}=\langle f, f\rangle$. Using the boundedness of the $k_{z}$, the Berezin transform extends to all $f \in$ $L^{1}(B, d \nu)$ by the formula

$$
\tilde{f}(z)=\frac{1}{K(z, z)} \int_{B}|K(z, w)|^{2} f(w) d \nu(w)
$$

Let $B C(B)$ denote the algebra of bounded continuous functions on $B$. For $f$ in $L^{2}(B, d \nu)$, the quantity

$$
\widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2}
$$

is a continuous function on $B$. We denote $f \in B M O$ if $\widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2}$ is in $B C(B)$ as a function of $z$. For any subset $S$ of $B$, we write

$$
\|f\|_{B M O(S)} \equiv \sup \left\{\widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2}: z \in S\right\}
$$

and

$$
\|f\|_{B M O} \equiv\|f\|_{B M O(B)} .
$$

BMO in the Bergman metric was first exhibited in [2] and [3] where BMO was used to characterize the boundedness of Hankel operators on the Bergman spaces.
$\beta$ is the Bergman metric on $B$ (See [1], [4] and [6]). For $f$ continuous on $B$, we define

$$
w(f)(z)=\sup \{|f(z)-f(w)|: \beta(z, w) \leq 1\}
$$

$w(f)(z)$ is called the oscillation of $f$ at $z$ in the Bergman metric. We say $f$ is of bounded oscillation $(f \in B O(B))$ if $w(f)(z)$ is in $B C(B)$ (as a function of $z$ ). We write

$$
\|f\|_{B O}=\sup \{w(f)(z): z \in B\} .
$$

In Section 2, we will show that if $f \in B M O$, then $\|f\|_{B O} \leq M_{1} \|$ $f \|_{B M O}$ for some constant $M_{1}$. We will also show that if $f \in B O$, then $\|f\|_{B M O} \leq M_{2}\|f\|_{B O}^{2}$ for some constant $M_{2}$.

For $z \in B, \xi \in \mathbb{C}^{n}$, set

$$
b_{B}^{2}(z, \xi)=\frac{n+1}{\left(1-|z|^{2}\right)^{2}}\left[\left(1-|z|^{2}\right)|\xi|^{2}+|<z, \xi>|^{2}\right] .
$$

Let $H(B)$ be the space of all holomorphic functions in $B$. If $f \in H(B)$, where $H(B)$ is the set of holomorphic functions on $B$, then the quantity $Q_{f}$ is defined by

$$
Q_{f}(z)=\sup _{|\xi|=1} \frac{|\nabla f(z) \cdot \xi|}{b_{B}(z, \xi)}, \quad z \in B, \quad \xi \in \mathbb{C}^{n}
$$

where $\nabla f(z)=\left(\frac{\partial f(z)}{\partial z_{1}}, \cdots, \frac{\partial f(z)}{\partial z_{n}}\right)$ is the holomorphic gradient of $f$ (See $[1],[5],[6],[7]$ and $[10])$. A holomorphic function $f: B \rightarrow \mathbb{C}$ is called a Bloch function $(f \in \mathcal{B})$ if

$$
\|f\|_{\mathcal{B}}=\sup _{z \in B} Q_{f}(z)<\infty
$$

Bloch functions on bounded homogeneous domains were first studied in [6]. In [10], Timoney showed that the linear space of all holomorphic functions $f: B \rightarrow \mathbb{C}$ which satisfy

$$
\|f\|_{\mathcal{B}}=\sup _{z \in B}\left(1-|z|^{2}\right)\|\nabla f(z)\|<\infty
$$

is equivalent to the space $\mathcal{B}$ of Bloch functions on $B$.
The theory for the space $\mathcal{B}$ of Bloch functions on $B$ was extended to the weighted Bloch space in [4],[5] and [7]. In Section 3, we will show that if
$f \in \mathcal{B}$, then $\|f\|_{B O} \leq\|f\|_{\mathcal{B}}$ and that if $f \in B M O$ and $f$ is holomorphic, then $\|f\|_{\mathcal{B}}^{2} \leq M\|f\|_{B M O}$ for some constant $M$.

## 2. Relationship between $\|f\|_{B M O}$ and $\|f\|_{B O}^{2}$

Let $a \in B$ and $P_{a}$ be the orthogonal projection of $\mathbb{C}^{n}$ onto the subspace generated by $a$, which is given by $P_{0}=0$, and

$$
P_{a} z=\frac{<z, a>}{<a, a>} a, \quad \text { if } \quad a \neq 0
$$

Let $Q_{a}=I-P_{a}$. Define $\varphi_{a}$ on $B$ by

$$
\varphi_{a}(z)=\frac{a-P_{a} z-\sqrt{1-|a|^{2}} Q_{a} z}{1-<z, a>}
$$

$\varphi_{a}$ belongs to the group $A u t(B)$ of holomorphic automorphisms of $B$ and satisfies $\varphi_{a}(0)=a, \varphi_{a}(a)=0$ and $\varphi_{a}\left(\varphi_{a}(z)\right)=z($ See [10, Theorem2.2.2]).

Theorem 1. Let $z \in B$. Let $J_{C} \varphi_{z}$ be the determinant of the complex Jacobian of $\varphi_{z}$. Then

$$
\left|J_{C} \varphi_{z}(w)\right|^{2}=\left|k_{z}(w)\right|^{2} .
$$

Proof. See [9, Theorem 2.2.6].

Theorem 2. For $f \in L^{2}(B, d \nu)$,

$$
\widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2}=\frac{1}{2} \int_{B} \int_{B}\left|\left(f \circ \varphi_{z}\right)(u)-\left(f \circ \varphi_{z}\right)(w)\right|^{2} d \nu(u) d \nu(w)
$$

Proof.

$$
\begin{aligned}
& 2\left(\widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2}\right) \\
& =\left.\left|\widetilde{|f|^{2}}(z)-\int_{B} f(u)\right| k_{z}(u)\right|^{2} d \nu(u) \int_{B} \overline{f(w)}\left|k_{z}(w)\right|^{2} d \nu(w) \\
& \quad-\int_{B} \overline{f(u)}\left|k_{z}(u)\right|^{2} d \nu(u) \int_{B} f(w)\left|k_{z}(w)\right|^{2} d \nu(w)+\widetilde{|f|^{2}}(z) \\
& =\int_{B} \int_{B}\left(|f(u)|^{2}-f(u) \overline{f(w)}-\overline{f(u)} f(w)\right. \\
& \left.\quad \quad|f(w)|^{2}\right)\left|k_{z}(u)\right|^{2}\left|k_{z}(w)\right|^{2} d \nu(u) d \nu(w) \\
& =\int_{B} \int_{B}|f(u)-f(w)|^{2}\left|k_{z}(u)\right|^{2}\left|k_{z}(w)\right|^{2} d \nu(u) d \nu(w) .
\end{aligned}
$$

By Theorem 1,

$$
\begin{aligned}
& \int_{B} \int_{B}|f(u)-f(w)|^{2}\left|k_{z}(u)\right|^{2}\left|k_{z}(w)\right|^{2} d \nu(u) d \nu(w) \\
& =\int_{B} \int_{B} \mid f(u) \overline{f(u)}-f(u) \overline{f(w)} \\
& =-\overline{f(u)} f(w)-\left.f(w) \overline{f(w)}\right|^{2}\left|k_{z}(u)\right|^{2}\left|k_{z}(w)\right|^{2} d \nu(u) d \nu(w) \\
& =\int_{B} \int_{B}\left\{f \left(\varphi_{z}(u) \overline{f\left(\varphi_{z}(u)\right)}-f\left(\varphi_{z}(u)\right) \overline{f(w)}\right.\right. \\
& \left.\quad-\overline{f\left(\varphi_{z}(u)\right)} f\left(\varphi_{z}(w)\right)-f\left(\varphi_{z}(w)\right) \overline{f\left(\varphi_{z}(w)\right)}\right\} d \nu(u) d \nu(w) \\
& =\int_{B} \int_{B}\left|\left(f \circ \varphi_{z}\right)(u)-\left(f \circ \varphi_{z}\right)(w)\right|^{2} d \nu(u) d \nu(w) .
\end{aligned}
$$

Theorem 3. The function $\beta(0, \cdot)$ is in $L^{p}(B, d \nu)$ for all $p>0$.
Proof. See [3, Theorem E].
Lemma 4. For fixed $r>0$ and continuous $f$ such that

$$
\sup \{|f(z)-f(w)|: \beta(z, w) \leq r\}=c(r, f)
$$

we have

$$
|f(z)-f(w)| \leq c(f, r)\left[1+r^{-1} \beta(z, w)\right]
$$

for all $z, w \in B$.
Proof. See [3, Lemma 12].
Theorem 5. $\|f\|_{B M O} \leq M\|f\|_{B O}^{2}$ for some constant $M$.
Proof. By the proof of Theorem 2,

$$
\begin{aligned}
& \widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2} \\
& =\frac{1}{2} \int_{B} \int_{B}|f(u)-f(w)|^{2}\left|k_{z}(u)\right|^{2}\left|k_{z}(w)\right|^{2} d \nu(w) d \nu(w) .
\end{aligned}
$$

Since, by Lemma 4 ,

$$
|f(u)-f(w)|=\|f\|_{B O}(\beta(u, w)+1),
$$

$$
\begin{aligned}
& \widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2} \\
& =\frac{1}{2}\|f\|_{B O}^{2} \int_{B} \int_{B}(\beta(u, w)+1)^{2}\left|k_{z}(u)\right|^{2}\left|k_{z}(w)\right|^{2} d \nu(w) d \nu(w) \\
& =\frac{1}{2}\|f\|_{B O}^{2} \int_{B} \int_{B}\left(\beta\left(\varphi_{z}(u), \varphi_{z}(w)\right)+1\right)^{2} d \nu(w) d \nu(w) \\
& \leq \frac{1}{2}\|f\|_{B O}^{2} \int_{B} \int_{B}(\beta(u, w)+1)^{2} d \nu(w) d \nu(w) \\
& \leq M\|f\|_{B O}^{2}
\end{aligned}
$$

where the last inequality follows from Theorem 3 . This implies that

$$
\|f\|_{B M O}=\sup \left\{\left|\widetilde{\left.f\right|^{2}}(z)-|\tilde{f}(z)|^{2}: z \in B\right\} \leq M\|f\|_{B O}^{2} .\right.
$$

Theorem 6. If $f \in B M O$, then

$$
|\tilde{f}(a)-\tilde{f}(b)| \leq M\|f\|_{B M O} \beta(a, b)
$$

for some constant $M$.
Proof. See [3, Corollary 1].

Theorem 7. If $f \in B M O$ is holomorphic, then

$$
\|f\|_{B O} \leq M\|f\|_{B M O} .
$$

for some constant $M$.
Proof. Since $f$ is holomorphic, $\tilde{f}=f$. By Theorem 6,

$$
\|f\|_{B O} \leq M\|f\|_{B M O} .
$$

## 3. Equivalent norms to $\|f\|_{\mathcal{B}}$

Theorem 8. For $f \in L_{a}^{2}(B)$, if $\gamma$ is a geodesic of length $\beta(z, w)$ joining $z$ to $w$, then

$$
|f(z)-f(w)| \leq\left\{\sup _{a \in \gamma} Q_{f}(a)\right\} \beta(z, w) .
$$

Proof. See [10, I].
Theorem 9. If $f \in \mathcal{B}$, then

$$
\|f\|_{B O} \leq\|f\|_{\mathcal{B}} .
$$

Proof. This follows from Theorem 8.
Lemma 10. If $f$ is in $L_{a}^{2}(B)$,

$$
\left|\nabla\left(f \circ \varphi_{a}\right)(0)\right|^{2} \leq n(n+1)^{2}\left\|f(a)-f \circ \varphi_{a}\right\|_{L^{2}}^{2} .
$$

Proof. Let $g \in L_{a}^{2}(B)$. Then

$$
\begin{aligned}
g(z) & =\int_{B} g(w) K(z, w) d \nu(w) \\
& =\frac{n!}{\pi^{n}} \int_{B} \frac{g(w)}{(1-\langle z, w\rangle)^{n+1}} d \nu(w) .
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial g}{\partial z_{i}}(z)=(n+1) \int_{B} \frac{\overline{w_{i}} g(w)}{(1-\langle z, w\rangle)^{n+2}} d \nu(w) \\
\left|\frac{\partial g}{\partial z_{i}}(0)\right| \leq(n+1) \int_{B}|g(w)| d \nu(w)
\end{gathered}
$$

Replacing $g$ by $g-g(0)$ yields

$$
\begin{aligned}
\left|\frac{\partial g}{\partial z_{i}}(0)\right| & \leq(n+1) \int_{B}|g(w)-g(0)| d \nu(w) \\
& \leq(n+1)\left(\int_{B} d \nu(w)\right)^{1 / 2}\left(\int_{B}|g(w)-g(0)|^{2} d \nu(w)\right)^{1 / 2} \\
& =(n+1)\left(\int_{B}|g(w)-g(0)|^{2} d \nu(w)\right)^{1 / 2} . \\
|\nabla g(0)|^{2} & =\sum_{i=1}^{n}\left|\frac{\partial g}{\partial z_{i}}(0)\right|^{2} \leq n(n+1)^{2} \int_{B}|g(w)-g(0)|^{2} d \nu(w) .
\end{aligned}
$$

Replacing $g$ by $f \circ \varphi_{a}$, we have

$$
\left|\nabla\left(f \circ \varphi_{a}\right)(0)\right|^{2} \leq n(n+1)^{2}\left\|f(a)-f \circ \varphi_{a}\right\|_{L^{2}}^{2} .
$$

Theorem 11. For all $\varphi_{a}$ in $\operatorname{Aut}(B)$,

$$
Q_{f}\left(\varphi_{a}(z)\right)=Q_{f \circ \varphi_{a}}(z) .
$$

Proof. See [10, Remark 4.4].

Theorem 12. If $f \in B M O$ is holomorphic,

$$
\|f\|_{\mathcal{B}}^{2} \leq M\|f\|_{B M O} .
$$

Proof. By Theorem 11,

$$
Q_{f}(a)=Q_{f}\left(\varphi_{a}(0)\right)=Q_{f \circ \varphi_{a}}(0)
$$

From the definition of $Q_{f}(z)$ and Lemma 10,

$$
Q_{f}(a) \leq A\left|\nabla\left(f \circ \varphi_{a}\right)(0)\right| \leq B\left\|f(a)-f \circ \varphi_{a}\right\|_{L^{2}}
$$

for some constants $A$ and $B$. Since

$$
\begin{aligned}
& \widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2} \\
& =\widetilde{|f|^{2}}(z)-f(z) \overline{f(z)}-\overline{f(z)} f(z)-|\tilde{f}(z)|^{2} \\
& =\int_{B}\left|\left(f \circ \varphi_{z}\right)(w)\right|^{2}-\left(f \circ \varphi_{z}\right)(w) \overline{f(z)} \\
& \left.\quad-\overline{\left(f \circ \varphi_{z}\right)(w)} f(z)+|f(z)|^{2}\right) d \nu(w) \\
& =\int_{B}\left|f \circ \varphi_{z}(w)-f(z)\right|^{2} d \nu(w), \\
& \quad Q_{f}(z)^{2} \leq \widetilde{|f|^{2}}(z)-|\tilde{f}(z)|^{2} .
\end{aligned}
$$

This implies that

$$
\|f\|_{\mathcal{B}}^{2}=\sup _{z \in B} Q_{f}(z)^{2} \leq \sup \left\{\left|\widetilde{\left.f\right|^{2}}(z)-|\tilde{f}(z)|^{2}: z \in B\right\}=M\|f\|_{B M O}\right.
$$

## References

1. S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
2. C. A. Berger, L. A. Coburn and K. H. Zhu, BMO on the Bergman spaces of the classical domains, Bull. Amer. Math. Soc. 17 (1987), 133-136.
3. D. Bekolle, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350.
4. K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces $\mathcal{B}_{q}$, J. Korean Math. Soc. 39 (2002), 277-287.
5. K. S. Choi, Little Hankel operators on Weighted Bloch spaces $\mathcal{B}_{q}$, C. Korean Math. Soc. 18 (2003), 469-479.
6. K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458.
7. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in $\mathbb{C}^{n}$, J. Korean Math. Soc. 35 (1998), 171-189.
8. S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth \& Brooks /Cole Math. Series, Pacific Grove, CA.
9. W. Rudin, Function theory in the unit ball of $\mathbb{C}^{n}$, Springer Verlag, New York 1980.
10. R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc 12(1980), 241-267.
11. K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York 1990.

* 

Department of Information Security
Konyang university
Nonsan 320-711, Republic of Korea
E-mail: ksc@konyang.ac.kr

