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MAPPINGS RELATED TO MINIMAL SURFACES

Sook Heui Jun*

Abstract. In this paper, we study harmonic mappings related to the non-
parametric minimal surfaces that lie over the upper halfplane.

1. Introduction

Let D be a domain in C. A real-valued function u on D is said to be

harmonic in a given domain D if it has continuous partial derivatives of the

first and second order in D and satisfies the partial differential equation

uxx + uyy = 0

on D.

A continuous function f = u + iv defined in D is harmonic if u and v are

real harmonic in D. In any simply connected subdomain of D we can write

f = h+g, where h and g are analytic and g denotes the function z 7−→ g(z).

A harmonic mapping f is univalent in D if it is one-to-one and orientation

preserving in D.

Let Ω be a simply connected domain in C. Let S be a nonparametric

surface over Ω given by

S = {(u, v, F (u, v)) : u + iv ∈ Ω}.

Then S is a minimal surface if and only if S has the representation of the

form

S =
{(

Re

∫ ζ

0

φ1(z)dz+c1, Re

∫ ζ

0

φ2(z)dz+c2, Re

∫ ζ

0

φ3(z)dz+c3

)
: z ∈ D

}
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where

D = {z : |z| < 1},
φ2

1 + φ2
2 + φ2

3 = 0,

φ1, φ2, φ3 are analytic, and

f = u + iv = Re

∫ ζ

0

φ1(z)dz + iRe

∫ ζ

0

φ2(z)dz + c

(1.1)

is a conformal univalent harmonic mapping from D onto Ω [3,4]. Since the

mapping f is harmonic in D, it is of the form f = h + g where h and g are

analytic in D. In addition, a = g′/h′ is analytic in D and |a(z)| < 1.

In this paper, we will show that the conformal univalent harmonic map-

pings

f(z) = p1 +
ip2

2

[(
1
2
log

1 + z

1− z
+

z

(1− z)2

)

−
(

1
2
log

1 + z

1− z
+

z

(1− z)2

)
+

1 + z

1− z
+

(
1 + z

1− z

)]

from D onto the upper halfplane Ω = {w : Im{w} > 0} arise in connection

with the nonparametric minimal surfaces S that lies over Ω by using the

properties of univalent harmonic mappings.

2. Univalent harmonic mapping

The following result is obtained by J.G. Clunie and T. Sheil-Small. We

are going to use it in this section.

Theorem 1([2]. Theorem 5.3). A harmonic f = h+g locally univalent

in D is a univalent mapping of D onto a domain convex in the direction of

the real axis (i.e. a domain which has a connected intersection with every

line parallel to the real axis) if and only if h − g is a conformal univalent

mapping of D onto a domain convex in the direction of the real axis.

Let S be a nonparametric minimal surface over Ω = {w : Im{w} > 0}.
Then we have a conformal univalent harmonic mapping f = h + g from

D onto Ω satisfying (1.1). Fix a point p = p1 + ip2 in Ω, and let P =
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(p1, p2, F (p)) be the corresponding point of S. Since the composition f ◦Ψ

of a harmonic function f with an analytic function Ψ is harmonic, we may

normalize in such a way that the harmonic mapping f satisfies f(0) = p.

Since Ω is convex in the direction of the real axis, we know that the analytic

function φ = h− g is a conformal univalent mapping of D onto the domain

Ω by using Theorem 1. We are free to normalize g(0) = 0, in which case

φ(0) = h(0) = f(0) = p.

Theorem 2. A conformal univalent harmonic mapping f = h + g from

D onto Ω satisfying (1.1) normalized by f(0) = p and g(0) = 0 has the

representation

(2.1) f(z) = Re{p +
∫ z

0

1 + a

1− a
φ′dz}+ iIm{φ}.

Proof. f = h+ g and a = g′/h′ implies that Im{f} = Im{φ}, Re{f} =

Re{h + g}, and h′ + g′ = 1+a
1−aφ′.

f(z) =Re{f}+ iIm{f} = Re{h + g}+ iIm{φ}

=Re{
∫ z

0

(h′ + g′)dz + c}+ iIm{φ}

=Re{
∫ z

0

1 + a

1− a
φ′dz + c}+ iIm{φ}.

From f(0) = p and g(0) = 0, we obtain

f(z) = Re{p +
∫ z

0

1 + a

1− a
φ′dz}+ iIm{φ}.

¤

Theorem 3. If f = h + g is of the form (1.1), then we have

(2.2) φ1 = h′ + g′, φ2 = −i(h′ − g′), and φ3 = 2ibh′

where a = b2.
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Proof. Re{w} = w+w
2 implies that

f =Re

∫ ζ

0

φ1(z)dz + iRe

∫ ζ

0

φ2(z)dz + c

=

∫ ζ

0
φ1(z)dz +

∫ ζ

0
φ1(z)dz

2
+ i

∫ ζ

0
φ2(z)dz +

∫ ζ

0
φ2(z)dz

2
+ c

=
1
2

∫ ζ

0

(φ1 + iφ2)dz +
1
2

∫ ζ

0

(φ1 − iφ2)dz + c.

From f = h + g, we have

h =
1
2

∫ ζ

0

(φ1 + iφ2)dz + c, g =
1
2

∫ ζ

0

(φ1 − iφ2)dz.

Hence

h′ + g′ =
1
2
(φ1 + iφ2) +

1
2
(φ1 − iφ2) = φ1.

Similarly, we get

h′ − g′ =
1
2
(φ1 + iφ2)− 1

2
(φ1 − iφ2) = iφ2.

Therefore φ2 = −i(h′ − g′). Since φ2
1 + φ2

2 + φ2
3 = 0, we obtain

(2.3) φ2
3 = −(h′ + g′)2 − [−i(h′ − g′)]2 = −4h′g′ = −4h′(ah′) = −4ah′2

where a = g′/h′. The equation (2.3) tells us that not all function a cor-

respond to nonparametric minimal surfaces. That is, a must be a per-

fect square. Let a = b2. Then b is analytic in D and |b| < 1. Thus

φ3 = 2i
√

ah′ = 2ibh′. ¤

Theorem 4. The analytic function φ = h− g is of the form

(2.4) φ(z) =
p− pz

1− z
.

Proof. By Theorem 1, φ is a conformal univalent mapping from D onto

Ω with φ(0) = p. We begin by finding all Möbius transformations φ of D

onto the upper halfplane Ω with φ(0) = p ∈ Ω, φ(eiα) = 0, φ(eiβ) = ∞ ; by

the simple calculation, we obtain

φ =
p(1− e−iαz)
1− e−iβz
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where α 6= β. Since φ(eiβz) = p(1−e−iα+iβz)
1−z and a rotation of the disk D is

simply reparametrizations of the same surface, it is no loss of generality to

assume that e−iβ = 1. So we get φ(z) = p(1−e−iαz)
1−z with φ(0) = p. Since

the boundry values of φ are on ∂Ω, Im{φ(ei(π+ α
2 ))} must be 0. From this,

we get ei α
2 = p. Therefore φ(z) = p−pz

1−z with φ(0) = p. ¤

Now we are ready to find out some conformal univalent harmonic map-

pings from D onto the upper halfplane Ω = {w : Im{w} > 0} that arise in

connection with the nonparametric minimal surface S that lie over Ω. Let

b(z) = ±z. From (1.1), (2.1), (2.2), and (2.4), we obtain the followings;

u = Re{p +
∫ z

0

1 + b2

1− b2
φ′dz}

= p1 − 2p2Im

∫ z

0

1 + z2

(1− z2)(1− z)2
dz

= p1 − p2Im{1
2
log

1 + z

1− z
+

z

(1− z)2
}

= p1 +
ip2

2

[(
1
2
log

1 + z

1− z
+

z

(1− z)2

)
−

(
1
2
log

1 + z

1− z
+

z

(1− z)2

)]
,

v = Im{φ} = p2Re{1 + z

1− z
} =

p2

2

[
1 + z

1− z
+

(
1 + z

1− z

)]
,

F = Re

∫ ζ

0

φ3dz + c3 = Re

∫ z

0

2ibh′dz + c3

= Im

∫ z

0

−2bh′dz + c3 = Im

∫ z

0

−2b(h′ − g′)
1− g′

h′
dz + c3

= Im

∫ z

0

−2bφ′

1− b2
dz + c3 = ±4p2Re

∫ z

0

z

(1− z2)(1− z)2
dz + c3

= ±p2Re{ z

(1− z)2
− 1

2
log

1 + z

1− z
}+ c3.

Let 1+z
1−z = Reit. Then R > 0 and −π

2 < t < π
2 because 1+z

1−z is a Möbius

transformation from D to the right half plane. From these, we get z =
Reit−1
Reit+1 . Substitue this into the above u, v, and F . Then we get the follow-
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ings;

u =p1 − p2

4
(2t + R2sin2t),

v =p2Rcost,

F =± p2

4
(R2cos2t− logR2) + c4.

(2.5)

In this case u varies from −∞ to ∞ on each horizontal line. That is, we

obtain minimal surfaces over all of Ω.

Finally, we obtain our last result.

Theorem 5.

f(z) = p1 +
ip2

2

[(
1
2
log

1 + z

1− z
+

z

(1− z)2

)
−

(
1
2
log

1 + z

1− z
+

z

(1− z)2

)

+
1 + z

1− z
+

(
1 + z

1− z

)]

are harmonic univalent mappings that arise in connection with the minimal

surfaces S over Ω defined by equations (2.5).
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