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MAPPINGS RELATED TO MINIMAL SURFACES
Sook Heur Jun*

ABSTRACT. In this paper, we study harmonic mappings related to the non-
parametric minimal surfaces that lie over the upper halfplane.

1. Introduction
Let D be a domain in C. A real-valued function v on D is said to be
harmonic in a given domain D if it has continuous partial derivatives of the

first and second order in D and satisfies the partial differential equation
Ugy + Uyy = 0

on D.

A continuous function f = u + v defined in D is harmonic if u and v are
real harmonic in . In any simply connected subdomain of D we can write
f = h+3, where h and g are analytic and § denotes the function z — Wz)
A harmonic mapping f is univalent in D if it is one-to-one and orientation
preserving in D.

Let 2 be a simply connected domain in C. Let S be a nonparametric

surface over §2 given by
S ={(u,v, F(u,v)) : u+iv € Q}.

Then S is a minimal surface if and only if S has the representation of the

form
¢ ¢ ¢
S=<(R d R d R d : D
{< 6/0 ¢1(2)dz+c1 e/o D2(2)dz+co 6/0 ¢3(2) z+03> z € }
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where

(1.1) D ={z:|z| <1},
¢ + @3 + 65 =0,

¢1, P2, @3 are analytic, and
¢ ¢
f=u+iv= Re/ o1(2)dz —l—iRe/ P2(2)dz +c
0 0

is a conformal univalent harmonic mapping from D onto 2 [3,4]. Since the
mapping f is harmonic in D, it is of the form f = h + g where h and g are
analytic in D. In addition, a = ¢’/h’ is analytic in D and |a(z)| < 1.

In this paper, we will show that the conformal univalent harmonic map-

pings

' 1, 1+

1 14z z 142 14z
— (=
(2 Ogl—z+(1—z)2>+1—z+<l—z>]

from D onto the upper halfplane Q = {w : Im{w} > 0} arise in connection

with the nonparametric minimal surfaces S that lies over {2 by using the

properties of univalent harmonic mappings.

2. Univalent harmonic mapping
The following result is obtained by J.G. Clunie and T. Sheil-Small. We

are going to use it in this section.

Theorem 1([2]. THEOREM 5.3). A harmonic f = h+g locally univalent
in D is a univalent mapping of D onto a domain convex in the direction of
the real axis (i.e. a domain which has a connected intersection with every
line parallel to the real axis) if and only if h — g is a conformal univalent

mapping of D onto a domain convex in the direction of the real axis.

Let S be a nonparametric minimal surface over Q = {w : Im{w} > 0}.
Then we have a conformal univalent harmonic mapping f = h + g from

D onto Q satisfying (1.1). Fix a point p = p; + ipy in Q, and let P =
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(p1,p2, F(p)) be the corresponding point of S. Since the composition f o W
of a harmonic function f with an analytic function W is harmonic, we may
normalize in such a way that the harmonic mapping f satisfies f(0) = p.
Since 2 is convex in the direction of the real axis, we know that the analytic
function ¢ = h — g is a conformal univalent mapping of D onto the domain

Q by using Theorem 1. We are free to normalize g(0) = 0, in which case

¢(0) = h(0) = f(0) = p.

Theorem 2. A conformal univalent harmonic mapping f = h + g from
D onto Q satisfying (1.1) normalized by f(0) = p and g(0) = 0 has the

representation

(2.1) f(z) = Re{p+ /OZ %qﬁ’dz} +iIm{¢p}.

Proof. f=h+ganda= ¢ /h' implies that Im{f} = Im{¢}, Re{f} =
Re{h+ g}, and I + ¢’ = 1324/

f(z) =Re{f} +iIm{f} = Re{h + g} +iIm{¢}

:Re{/z(h’ +¢)dz + ¢} + iIm{¢}

0

S R R )
o 1—

From f(0) = p and ¢(0) = 0, we obtain

f(2) = Re{p + /0 %qﬁ/dz} + iIm{¢}.

Theorem 3. If f = h+ 7 is of the form (1.1), then we have
(2.2) =N +g, ¢2=—i(h' —g'), and g5 = 2ibl’

where a = b2.
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Proof. Re{w} = “I™ implies that
¢ ¢
f :Re/ ¢1(2)dz + Z'Re/ ¢2(z)dz + ¢
0 0
:foc ¢1(z)dz + foc o1(2)dz N vaog P2(2)dz + fUC ¢2(2)dz

2 2 +c
1 [ ) 1 ¢ '
:2/ (¢1 + Z¢2)dz + 5 / (¢1 — l(f)g)dz + c.
0 0
From f = h + g, we have
1 [ 1 /¢
h = 2/ ($1 +ige)dz +¢, g = 2/ (¢1 — icha)dz.
0 0

Hence . 1
W+g = §(¢>1 +ipa) + §(¢1 —ig2) = ¢1.
Similarly, we get
1
W —g = (61 +iga) — §(¢1 — i) = ipa.

. Since ¢7 + @3 + ¢3 = 0, we obtain

N |

Therefore ¢o = —i(h' — ¢’

~—

(23) ¢2=—(0 +g)*—[—i(W — ¢)]2 = —4h'g' = —4W (ah') = —4ak’*

where a = ¢'/h’. The equation (2.3) tells us that not all function a cor-
respond to nonparametric minimal surfaces. That is, a must be a per-
fect square. Let a = b2. Then b is analytic in D and |[b| < 1. Thus
b3 = 2ir/ah’ = 2ibh/. 0

Theorem 4. The analytic function ¢ = h — g is of the form

(2.4) o) = L2,

Proof. By Theorem 1, ¢ is a conformal univalent mapping from D onto
Q with ¢(0) = p. We begin by finding all Mébius transformations ¢ of D
onto the upper halfplane Q with ¢(0) = p € Q, ¢(e!*) = 0, ¢(e’) = 00 ; by
the simple calculation, we obtain

p(1 —e i)
¢=——=5.
1—ePz
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. _ —ta+ifg
where a # 3. Since ¢(e?Pz) = p(lelfzz) and a rotation of the disk D is
simply reparametrizations of the same surface, it is no loss of generality to
assume that e = 1. So we get ¢(z) = pd=c 2) with ¢»(0) = p. Since

1—=z
the boundry values of ¢ are on 9Q, Im{¢(e’"*2))} must be 0. From this,
we get €'2 = p. Therefore ¢(z) = 22 with ¢(0) = p. O

Now we are ready to find out some conformal univalent harmonic map-
pings from D onto the upper halfplane Q = {w : Im{w} > 0} that arise in
connection with the nonparametric minimal surface S that lie over 2. Let
b(z) = £z. From (1.1), (2.1), (2.2), and (2.4), we obtain the followings;

1+ b
u:Re{p+/ gbd}
1+ 22
=p1 — 2pol
=p1 pzm/ 1_Z21_Z)2dz
—i—z Z
= I l

e | (1 14z z 1. 14z z
=+ 2202 (=
T [(2 Ogl—z+(1—z)2> <2 9T T a—a2))

v=Imioh = parel; ) = 21124 (152)]

F = Re/ ¢3dz + c3 = Re/ 2ibh'dz + c3
0

—2b(
—Im/ —2bhdz—|—03—Im/ 7g)d2+03
h/
—Im/ <b,dz—l—c +4 Re/z i dz +c
I R > 8T P J T ) (1 2)2 s
1 142
= tpoRe{——— — 2| .
b2 e{(l—z)2 Qg Fes

Let 2 = Re'. Then R > 0 and —% < t < % because 1= is a Mobius

transformation from D to the right half plane. From these, we get z =

Relt—1
Reit41°

Substitue this into the above u, v, and F. Then we get the follow-
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ings;
(2.5) u=p; — %(% + R%sin2t),
v =p9o Rcost,

F=+ %(R20082t — logR?) + ¢4.

In this case u varies from —oo to oo on each horizontal line. That is, we
obtain minimal surfaces over all of 2.

Finally, we obtain our last result.

Theorem 5.
ipo | (1 142 z 1 142 z
= 220 2 B ey |
U [(2091—z+(1—z)2> <2091—z+(1—z)2
+1+z+ 142
1—=2 1—=2

are harmonic univalent mappings that arise in connection with the minimal

surfaces S over §) defined by equations (2.5).
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