MAPPINGS RELATED TO MINIMAL SURFACES

Sook Heui Jun*

Abstract

In this paper, we study harmonic mappings related to the nonparametric minimal surfaces that lie over the upper halfplane.

1. Introduction

Let \mathbb{D} be a domain in \mathbb{C}. A real-valued function u on \mathbb{D} is said to be harmonic in a given domain \mathbb{D} if it has continuous partial derivatives of the first and second order in \mathbb{D} and satisfies the partial differential equation

$$
u_{x x}+u_{y y}=0
$$

on \mathbb{D}.
A continuous function $f=u+i v$ defined in \mathbb{D} is harmonic if u and v are real harmonic in \mathbb{D}. In any simply connected subdomain of \mathbb{D} we can write $f=h+\bar{g}$, where h and g are analytic and \bar{g} denotes the function $z \longmapsto \overline{g(z)}$. A harmonic mapping f is univalent in \mathbb{D} if it is one-to-one and orientation preserving in \mathbb{D}.

Let Ω be a simply connected domain in \mathbb{C}. Let S be a nonparametric surface over Ω given by

$$
S=\{(u, v, F(u, v)): u+i v \in \Omega\}
$$

Then S is a minimal surface if and only if S has the representation of the form
$S=\left\{\left(\operatorname{Re} \int_{0}^{\zeta} \phi_{1}(z) d z+c_{1}, \operatorname{Re} \int_{0}^{\zeta} \phi_{2}(z) d z+c_{2}, \operatorname{Re} \int_{0}^{\zeta} \phi_{3}(z) d z+c_{3}\right): z \in D\right\}$

[^0]where
\[

$$
\begin{align*}
& D=\{z:|z|<1\} \tag{1.1}\\
& \phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=0 \\
& \phi_{1}, \phi_{2}, \phi_{3} \text { are analytic, and } \\
& f=u+i v=\operatorname{Re} \int_{0}^{\zeta} \phi_{1}(z) d z+i \operatorname{Re} \int_{0}^{\zeta} \phi_{2}(z) d z+c
\end{align*}
$$
\]

is a conformal univalent harmonic mapping from D onto $\Omega[3,4]$. Since the mapping f is harmonic in D, it is of the form $f=h+\bar{g}$ where h and g are analytic in D. In addition, $a=g^{\prime} / h^{\prime}$ is analytic in D and $|a(z)|<1$.

In this paper, we will show that the conformal univalent harmonic mappings

$$
\begin{aligned}
f(z) & =p_{1}+\frac{i p_{2}}{2}\left[\left(\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right)\right. \\
& \left.-\overline{\left(\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right)}+\frac{1+z}{1-z}+\overline{\left(\frac{1+z}{1-z}\right)}\right]
\end{aligned}
$$

from D onto the upper halfplane $\Omega=\{w: \operatorname{Im}\{w\}>0\}$ arise in connection with the nonparametric minimal surfaces S that lies over Ω by using the properties of univalent harmonic mappings.

2. Univalent harmonic mapping

The following result is obtained by J.G. Clunie and T. Sheil-Small. We are going to use it in this section.

Theorem 1([2]. Theorem 5.3). A harmonic $f=h+\bar{g}$ locally univalent in D is a univalent mapping of D onto a domain convex in the direction of the real axis (i.e. a domain which has a connected intersection with every line parallel to the real axis) if and only if $h-g$ is a conformal univalent mapping of D onto a domain convex in the direction of the real axis.

Let S be a nonparametric minimal surface over $\Omega=\{w: \operatorname{Im}\{w\}>0\}$. Then we have a conformal univalent harmonic mapping $f=h+\bar{g}$ from D onto Ω satisfying (1.1). Fix a point $p=p_{1}+i p_{2}$ in Ω, and let $P=$
$\left(p_{1}, p_{2}, F(p)\right)$ be the corresponding point of S. Since the composition $f \circ \Psi$ of a harmonic function f with an analytic function Ψ is harmonic, we may normalize in such a way that the harmonic mapping f satisfies $f(0)=p$. Since Ω is convex in the direction of the real axis, we know that the analytic function $\phi=h-g$ is a conformal univalent mapping of D onto the domain Ω by using Theorem 1. We are free to normalize $g(0)=0$, in which case $\phi(0)=h(0)=f(0)=p$.

Theorem 2. A conformal univalent harmonic mapping $f=h+\bar{g}$ from D onto Ω satisfying (1.1) normalized by $f(0)=p$ and $g(0)=0$ has the representation

$$
\begin{equation*}
f(z)=\operatorname{Re}\left\{p+\int_{0}^{z} \frac{1+a}{1-a} \phi^{\prime} d z\right\}+i \operatorname{Im}\{\phi\} \tag{2.1}
\end{equation*}
$$

Proof. $f=h+\bar{g}$ and $a=g^{\prime} / h^{\prime}$ implies that $\operatorname{Im}\{f\}=\operatorname{Im}\{\phi\}, \operatorname{Re}\{f\}=$ $R e\{h+g\}$, and $h^{\prime}+g^{\prime}=\frac{1+a}{1-a} \phi^{\prime}$.

$$
\begin{aligned}
f(z) & =\operatorname{Re}\{f\}+i \operatorname{Im}\{f\}=\operatorname{Re}\{h+g\}+i \operatorname{Im}\{\phi\} \\
& =\operatorname{Re}\left\{\int_{0}^{z}\left(h^{\prime}+g^{\prime}\right) d z+c\right\}+i \operatorname{Im}\{\phi\} \\
& =\operatorname{Re}\left\{\int_{0}^{z} \frac{1+a}{1-a} \phi^{\prime} d z+c\right\}+i \operatorname{Im}\{\phi\}
\end{aligned}
$$

From $f(0)=p$ and $g(0)=0$, we obtain

$$
f(z)=\operatorname{Re}\left\{p+\int_{0}^{z} \frac{1+a}{1-a} \phi^{\prime} d z\right\}+i \operatorname{Im}\{\phi\}
$$

Theorem 3. If $f=h+\bar{g}$ is of the form (1.1), then we have

$$
\begin{equation*}
\phi_{1}=h^{\prime}+g^{\prime}, \phi_{2}=-i\left(h^{\prime}-g^{\prime}\right), \text { and } \phi_{3}=2 i b h^{\prime} \tag{2.2}
\end{equation*}
$$

where $a=b^{2}$.

Proof. $\operatorname{Re}\{w\}=\frac{w+\bar{w}}{2}$ implies that

$$
\begin{aligned}
f & =\operatorname{Re} \int_{0}^{\zeta} \phi_{1}(z) d z+i \operatorname{Re} \int_{0}^{\zeta} \phi_{2}(z) d z+c \\
& =\frac{\int_{0}^{\zeta} \phi_{1}(z) d z+\overline{\int_{0}^{\zeta} \phi_{1}(z) d z}}{2}+i \frac{\int_{0}^{\zeta} \phi_{2}(z) d z+\overline{\int_{0}^{\zeta} \phi_{2}(z) d z}}{2}+c \\
& =\frac{1}{2} \int_{0}^{\zeta}\left(\phi_{1}+i \phi_{2}\right) d z+\frac{1}{2} \int_{0}^{\zeta}\left(\phi_{1}-i \phi_{2}\right) d z+c
\end{aligned}
$$

From $f=h+\bar{g}$, we have

$$
h=\frac{1}{2} \int_{0}^{\zeta}\left(\phi_{1}+i \phi_{2}\right) d z+c, g=\frac{1}{2} \int_{0}^{\zeta}\left(\phi_{1}-i \phi_{2}\right) d z
$$

Hence

$$
h^{\prime}+g^{\prime}=\frac{1}{2}\left(\phi_{1}+i \phi_{2}\right)+\frac{1}{2}\left(\phi_{1}-i \phi_{2}\right)=\phi_{1}
$$

Similarly, we get

$$
h^{\prime}-g^{\prime}=\frac{1}{2}\left(\phi_{1}+i \phi_{2}\right)-\frac{1}{2}\left(\phi_{1}-i \phi_{2}\right)=i \phi_{2}
$$

Therefore $\phi_{2}=-i\left(h^{\prime}-g^{\prime}\right)$. Since $\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=0$, we obtain

$$
\begin{equation*}
\phi_{3}^{2}=-\left(h^{\prime}+g^{\prime}\right)^{2}-\left[-i\left(h^{\prime}-g^{\prime}\right)\right]^{2}=-4 h^{\prime} g^{\prime}=-4 h^{\prime}\left(a h^{\prime}\right)=-4 a h^{\prime 2} \tag{2.3}
\end{equation*}
$$

where $a=g^{\prime} / h^{\prime}$. The equation (2.3) tells us that not all function a correspond to nonparametric minimal surfaces. That is, a must be a perfect square. Let $a=b^{2}$. Then b is analytic in D and $|b|<1$. Thus $\phi_{3}=2 i \sqrt{a} h^{\prime}=2 i b h^{\prime}$.

Theorem 4. The analytic function $\phi=h-g$ is of the form

$$
\begin{equation*}
\phi(z)=\frac{p-\bar{p} z}{1-z} \tag{2.4}
\end{equation*}
$$

Proof. By Theorem $1, \phi$ is a conformal univalent mapping from D onto Ω with $\phi(0)=p$. We begin by finding all Möbius transformations ϕ of D onto the upper halfplane Ω with $\phi(0)=p \in \Omega, \phi\left(e^{i \alpha}\right)=0, \phi\left(e^{i \beta}\right)=\infty$; by the simple calculation, we obtain

$$
\phi=\frac{p\left(1-e^{-i \alpha} z\right)}{1-e^{-i \beta} z}
$$

where $\alpha \neq \beta$. Since $\phi\left(e^{i \beta} z\right)=\frac{p\left(1-e^{-i \alpha+i \beta} z\right)}{1-z}$ and a rotation of the disk D is simply reparametrizations of the same surface, it is no loss of generality to assume that $e^{-i \beta}=1$. So we get $\phi(z)=\frac{p\left(1-e^{-i \alpha} z\right)}{1-z}$ with $\phi(0)=p$. Since the boundry values of ϕ are on $\partial \Omega, \operatorname{Im}\left\{\phi\left(e^{i\left(\pi+\frac{\alpha}{2}\right)}\right)\right\}$ must be 0 . From this, we get $e^{i \frac{\alpha}{2}}=p$. Therefore $\phi(z)=\frac{p-\bar{p} z}{1-z}$ with $\phi(0)=p$.

Now we are ready to find out some conformal univalent harmonic mappings from D onto the upper halfplane $\Omega=\{w: \operatorname{Im}\{w\}>0\}$ that arise in connection with the nonparametric minimal surface S that lie over Ω. Let $b(z)= \pm z$. From (1.1), (2.1), (2.2), and (2.4), we obtain the followings;

$$
\begin{aligned}
u & =\operatorname{Re}\left\{p+\int_{0}^{z} \frac{1+b^{2}}{1-b^{2}} \phi^{\prime} d z\right\} \\
& =p_{1}-2 p_{2} \operatorname{Im} \int_{0}^{z} \frac{1+z^{2}}{\left(1-z^{2}\right)(1-z)^{2}} d z \\
& =p_{1}-p_{2} \operatorname{Im}\left\{\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right\} \\
& =p_{1}+\frac{i p_{2}}{2}\left[\left(\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right)-\overline{\left(\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right)}\right], \\
v & =\operatorname{Im}\{\phi\}=p_{2} \operatorname{Re}\left\{\frac{1+z}{1-z}\right\}=\frac{p_{2}}{2}\left[\frac{1+z}{1-z}+\overline{\left.\left(\frac{1+z}{1-z}\right)\right],}\right. \\
F & =\operatorname{Re} \int_{0}^{\zeta} \phi_{3} d z+c_{3}=\operatorname{Re} \int_{0}^{z} 2 i b h^{\prime} d z+c_{3} \\
& =\operatorname{Im} \int_{0}^{z}-2 b h^{\prime} d z+c_{3}=\operatorname{Im} \int_{0}^{z} \frac{-2 b\left(h^{\prime}-g^{\prime}\right)}{1-\frac{g^{\prime}}{h^{\prime}}} d z+c_{3} \\
& =\operatorname{Im} \int_{0}^{z} \frac{-2 b \phi^{\prime}}{1-b^{2}} d z+c_{3}= \pm 4 p_{2} \operatorname{Re} \int_{0}^{z} \frac{z}{\left(1-z^{2}\right)(1-z)^{2}} d z+c_{3} \\
& = \pm p_{2} \operatorname{Re}\left\{\frac{z}{(1-z)^{2}}-\frac{1}{2} \log \frac{1+z}{1-z}\right\}+c_{3} .
\end{aligned}
$$

Let $\frac{1+z}{1-z}=R e^{i t}$. Then $R>0$ and $-\frac{\pi}{2}<t<\frac{\pi}{2}$ because $\frac{1+z}{1-z}$ is a Möbius transformation from D to the right half plane. From these, we get $z=$ $\frac{R e^{i t}-1}{R e^{i t}+1}$. Substitue this into the above u, v, and F. Then we get the follow-
ings;

$$
\begin{align*}
u & =p_{1}-\frac{p_{2}}{4}\left(2 t+R^{2} \sin 2 t\right) \tag{2.5}\\
v & =p_{2} R \cos t \\
F & = \pm \frac{p_{2}}{4}\left(R^{2} \cos 2 t-\log R^{2}\right)+c_{4}
\end{align*}
$$

In this case u varies from $-\infty$ to ∞ on each horizontal line. That is, we obtain minimal surfaces over all of Ω.

Finally, we obtain our last result.

Theorem 5.

$$
\begin{aligned}
f(z)=p_{1}+\frac{i p_{2}}{2}\left[\left(\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right)\right. & -\overline{\left(\frac{1}{2} \log \frac{1+z}{1-z}+\frac{z}{(1-z)^{2}}\right)} \\
& \left.+\frac{1+z}{1-z}+\overline{\left(\frac{1+z}{1-z}\right)}\right]
\end{aligned}
$$

are harmonic univalent mappings that arise in connection with the minimal surfaces S over Ω defined by equations (2.5).

References

1. Lars. V. Ahlfors, Complex Analysis, McGraw-Hill, 1966.
2. J.G. Clunie and T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. A. I. 9 (1984), 3-25.
3. R. Osserman, A survey of minimal surfaces, Dover, 1986.
4. M. Spivak, A Comprehensive Introduction to Differential Geometry, Perish, 1979.

*

Department of Mathematics
Seoul Women's University
Seoul, 139-774, Republic of Korea
E-mail: shjun@swu.ac.kr

[^0]: This work was supported by the research fund of Nat. Sci. Inst., Seoul Women's University, 2005.

 Received September 21, 2006.
 2000 Mathematics Subject Classifications: Primary 30C45, 53A10, 30C50.
 Key words and phrases: Harmonic mapping, Minimal surface.

