Viability Determination of Pinus rigida Seeds Using Artificially Accelerated Aging

노화처리를 이용한 리기다소나무 종자의 활력 평가

  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Koo, Yeong-Bon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Chan-Soo (Warm-temperate Forest Research Center Korea Forest Research Institute) ;
  • Oh, Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Song, Jeong-Ho (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 구영본 (국립산림과학원 산림유전자원부) ;
  • 김찬수 (국립산림과학원 난대산림연구소) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 송정호 (국립산림과학원 산림유전자원부)
  • Published : 2006.03.01

Abstract

We tested the seed viability of Pinus rigida using accelerated aging to discover optimum times and temperatures far artificially accelerated aging. Seeds were artificially aged at different temperatures and during different tines. The seed viability was affected by the accelerated aging and by temperature with a decline in germination and seed vigor. The aging index of P. rigida seed was 0.31 at $35^{\circ}C$ and seed viability was nearly lost after aging treatment at $40^{\circ}C$ for 15 days. The optimum temperature of P. rigida far the aging test was decided to be approximately $37^{\circ}C$ on the basis of the aging index. Inorganic materials and conductivity of leaching solution from aging seeds increased with the increase of aging period. The accelerated aging test was considered to be a suitable method to evaluate the seed viability of tree species. Because seed characters are much different among tree species, however, more studies need to be done to discover the optimum conditions for aging by tree species.

노화 처리를 이용하여 리기다소나무 종자의 활력을 평가하고, 적정 노화 처리 기간 및 온도를 결정하고자 하였다. 리기다소나무 종자의 활력은 노화 처리 기간과 온도에 큰 영향을 받았으며, 노화 처리가 진행되는 동안 종자 발아율과 종자 활력은 크게 감소하였다. 리기다소나무 종자의 노화 지수는 $35^{\circ}C$에서 0.31이었으며, $40^{\circ}C$에서 15일 동안 노화 처리한 종자는 활력을 완전히 상실하였다. 노화 지수를 기준으로 한, 리기다소나무 종자의 노화 처리 최적 온도는 대략 $37^{\circ}C$ 부근으로 판단되었다. 노화 처리된 종자로부터 빠져나온 용출액을 분석한 결과, 용출액내 무기물과 전기전도도는 노화 기간이 증가함에 따라 증가하였다. 노화 처리 시험은 수목 종자의 활력을 평가하는데 매우 적절한 방법으로 판단되었으나, 수종에 따라 종자 특성이 매우 다르므로 다양한 수종에 대해 노화 처리의 최적 조건을 찾기 위해서 더 많은 연구가 필요하다.

Keywords

References

  1. AOSA, 1983: Seed Vigor Testing Handbook. Contribution No. 32 to Handbook on seed testing. Association of Official Seed Analysis, 93pp
  2. AOSA (Association of Official Seed Analysis), 1985: Rules for testing seeds. Journal of Seed Technology 6, 1-118
  3. Bonner, F. T., 1998: Testing tree seeds for vigor: a review. Seed Technology 20(1), 5-17
  4. Bourland, F. M., and A. A. L. Ibrahim, 1982: Effects of accelerated aging treatments on six cotton cultivars. Crop Science 22, 637-640 https://doi.org/10.2135/cropsci1982.0011183X002200030050x
  5. Chaisurisri, K., D. G. W. Edwards, and Y. A. EI-Kassaby, 1993: Accelerated aging of Sitka spruce seeds. Silvae Genetica 42, 303-308
  6. Delouche, J. C., and C. C. Baskin, 1973: Accelerated aging technique for predicting the relative storability of seed lots. Seed Science and Technology 1, 427-452
  7. Downie, B., and B. S. P. Wang, 1992: Upgrading germinability and vigour of jack pine, lodgepole pine, and white spruce by the IDS technique. Canadian Journal of Forestry Research 22, 1124-1131 https://doi.org/10.1139/x92-149
  8. EI-Kassaby, Y. A., and D. G. W. Edwards, 1998: Genetic control of germination and the effects of accelerated aging in mountain hemlock seeds and its relevance to gene conservation. Forest Ecology and Management 112, 203-211 https://doi.org/10.1016/S0378-1127(98)00343-0
  9. Ellis, R. H., T.D. Hong, and E. H. Roberts. 1985: Compendium of Specific Germination and Test Recommendations. International Board for Plant Genetic Resources. Handbook of Seed Technology for Genebanks, Vol 2, Rome
  10. Hampton, J. G., and D. M. TeKrony, 1995: Handbook of Vigour Test Methods (3rd ed.) Zurich : International Seed Testing Association, 117pp
  11. International Seed Testing Association, 1985: International rules for seed testing. Seed Science and Technology 13, 297-355
  12. Kneebone, W. R., 1976: Some genetic aspects of seed vigor. Journal of Seed Technology 1, 86-97
  13. McDonald, M. B., Jr., 1980: Assessment of seed quality. HortScience 15, 184-188
  14. Powell, A. A., and S. Matthews, 1979: The influence of test condition on the imbibition and vigor of pea seeds. Journal of Experimental Botany 30, 193-197 https://doi.org/10.1093/jxb/30.1.193
  15. Powell, A. A., and S. Matthews, 1981: A physical explanation for solute leakage from dry pea embryos during imbibition. Journal of Experimental Botany 31, 1045-1050
  16. Simon, E. W., and L. K. Mills, 1983: Imbibition, leakage and membranes. Recent Advances In Phytochemistry 17, 9-27
  17. Thapliyal, R. C., and K. F. Connor, 1997: Effects of accelerated aging on viability, leachate exudation, and fatty acid content of Dalbergia sissoo Roxb. seeds. Seed Science and Technology 25, 311-319
  18. Wang, B. S. P., B. Downie, S. Wetzel, D. Palamarek, and R. Hamilton, 1992: Effects of cone scorching on germinability, and vigour of lodgepole pine (Pinus contorta var. latifolia) seeds in Alberta. Seed Science and Technology 20, 409-419