F22 29 159 A998 00 8 1S5 24

> 2 (@) = =]
WAL GBI FAFH - AR

Coverage metrics for high-level events in behavioral model verification

Kim, Kang Chul - Im, Chang Gyun - Ryu, Jae Hung - Han, Suk Bung

2 oFEe Mgeakala xjdeg FEEY

0jo

[
ol

FO

#H ol CAD 9] v]efA Q] Ao 2 Qlate] tjR o] tix g 3| 252 VHDL 9o & AL45le] A EY. 18
IIC FA7|&9 ded we site) 3o g Qia E3% 4 9lorn 2 VHDL 3 =9] F7|71 Wois| A ool
th 3t 7 Z(verification) 2 I A Ao} QoA A H1, e /\]ﬂ% 283l Aol ok B Ao A= SoC &
IP "]'°] A HAY ¢ U= AL FEN Z2EZ 0 FE HAFI}E NZE WS AASth VHDL 29 22

= SoCE IP Alo]ol A wAE 4= 9= Argga "YZPQ Ao)sta BEF3 1, 3+ ¥ AZdow-level code
verlﬁcatlon)oﬂ AR EE HEE UL A8 IP ALoof A Bl HlojE $EH 22 ER T SuEE9
SHE HEste WE S Aotai

ABSTRACT

The complexity of IC has rapidly increased as VLSI fabrication technology has grown up quickly. This paper proposes verification
methods for data conflicts and protocol between IPs for SoC with coverage metrics. The high-level events is defined to cooperation between
blocks or process statement in HDL, or a sequence of performing a job compared to low-level event. They are classified into two categories,
resource conflicts and protocol or specification-dependent conflicts. And two coverage metrics used for code coverage in low-level event are
proposed to verify the high-level events. The events of resource conflicts can be detected by using statement coverage metric if global signal or
variable has flags in a testbench program, and protocol-dependent events can be checked by data flow metric or path metric.

I E
Coverage metric, Low-leve! event, High-level event, SOC, IP

- MetistD Satchst W Fei Dot Mt 2006, 1. 11
- Z4cistn Bocfst MR8

F34 2

e
A

Ao e Akl @ AEE S

I . Introduction

As VLSI technology has been developed, the complexity
of IC has rapidly been increased, so design engineers and
verification engineers work together from the beginning of IC
design{1,2,3]. Verification is often confused with testing.
Testing verifies that the design was manufactured correctly.
Verification is to ensure that a design meets its functional
intent, and it is a process used to demonstrate the functional
correctness of a design[4,5]. Verification of complex
behavioral models has become a critical and time-consuming
process in hardware design. Verification consumes about
70% of the design effort in SoC(system on chip),
IP(intellectual property), ASIC[6,7,8,9].

Design verification is considered one of the most serious
bottleneck for chip design. Two
mechanisms to help achieve design verification are formal

multimillion-gate

proofs of correctness and thorough simulation. Simulation
can be applied to all levels of a design(from unit to chip) even
though there is no guarantee that the design is 100% verified.
It has problems that simulation speed is slow and it needs
bigger simulation mode! and a lot of computing resources in
simulation environment. Formal verification mathematically
proves the correctness of a design and falls under two broad
categories, Equivalence checkingand Model checking
[10,11,12]. But it is limited to block level design verification
due to its inability in handling large circuitry, therefore,
simulation is the only practical means for all levels of a design

When VHDL code is simulated, a testbench program is
used.[8] It is the code used to create a pre-determined input
sequence to a design, then optionally observe the response,
and it is commonly implemented using VHDL or Verilog and
may also include external data files or C routines. The test
bench will be used to apply input stimuli to the design
description to observe the outputs and compare them to
expected results. The advantage of creating a test bench
versus simulating the design interactively using the command
language of a given simulator is that it allows to document the
test bench in a human readable form[13].

In this paper, the high-level events is definedto
cooperation between blocks or process statement in HDL, ora
sequence of performing a job compared to low-level event.

They are classified into two categories, resource conflicts and
protocol or specification-dependent conflicts. And two
coverage metrics used for code coverage in low-level event
are proposed to verify the high-level events. The events of
resource conflicts can be detected by using statement
coverage metric if global signal or variable has flags in
testbench program, and protocol-dependent event can be
checked by data flow metric or path metric.

In section 2, previous works on low-level event and
coverage metrics are described. In section 3, the terminology
of high-level events is defined, and the classification of
high-level event compared to low-level eventis explained in
section 4. Two proposed coverage metrics for high-level
event coverage metrics are explained in section 5. Finally,
conclusion is describe in chapter 6.

II. Previous work

It is impossible to know that the design being verified is
indeed functionally correct, with 100% certainly. A popular
and precisely defined metrics in the software world is code
coverage[14][15]. Code coverage comes in a range of forms.
Code coverage is a tool that can identify what code has been
executed in the design under verification[8]. VHDL is a
complex concurrent language with a typical model having
many processes all conceptually executing at the time. So
coverage metrics defined in software have been borrowed and
used in hardware design when the correctness of VHDL
Program is checked. <Fig. 1> shows that design flow with

coverage check can reduce time and cost of design[15].

? Tested
Standard practice

L Manually created ‘ [

(error prone)
Simulati Simulation with VHDOL COVER
on Code coverage analysis

l |

Untested code Fully tested code

100% tested
Current best practice

Automatically
Generated stimuli

Wasted silicon real

Optimised design
estate

Objective measurement

uncertainty of design

a8 1 REZEE EHIH(Q S0 w2 MADIN
<Fig. 1> Design flow with and without code coverage tools

497

A FH BT =4 A10W A3

E 1. ZEHEE Y R

<Table 1> Code coverage metrics

Metric Description
Branch All branches should be visited
Condition All branch condltlons should be
exercised
Path How many sequences through
branches are executed
Toggle All signals’ bit should change states
. All signals in the processes’
Trigger sensitivity lists are activated
Al possible states in the state
State machine are visited
Arc How many transitions have been
made between states
Expression State trar_\smon controlling
expressions are tested
How many seguences of states are
Sequence executed
<Table 1> shows most popular code metrics

[9,13,16,17,18]. Statement metricmeasures how many signal
and variable assignments have been activated during
simulation. And branch metric measures how many branches
of IF and CASE statement have been activated. Path metric
calculates the sequential paths through the code, and
measures how many of the code paths have been tested.

1if RST="0" then
2 COUNT="0r
3 CNT=0
end
4 SR(0) <= SR(1);
5 SR(1) <=SR(2);
6 if(cik’event and clk="1") then
7 CNT <=not(CNT),
8 DOUT <=DIN
end;
% 2 AEE ZEYE At oid =233
<Fig. 2> Example VHDL program for coverage
metrics.

498

<Fig. 2> is a program for coverage metrics with 4 paths,
depending on if conditions are true or false. If both conditions
are false, only 2 statements are exercised, but if both
conditions are true, 8 statements are exercised.

Qriginal _. Instrumented
Mgde; M Mode! Testbenches

Simulation
Engine

Metrics
Database

Coverage
Metrics

Report
Generator

a8 3 REHAE
<Fig 3> Code coverage process

<Fig. 3> shows how a code coverage tool works[8]. The
source code is first instrumented. The instrumentation process
simply adds checkpoints at strategic locations of the source
code to record whether a particular construct has been
exercised. The instrumented code is, then simulated normally
using all available testbenches. The cumulative traces from all
simulations are collected into a database. From the database,
reports can be generated to determine various coverage
metrics of the verification suite on the design. While verifying
VHDL code using low-level event and metrics, it is very
important to determine the stopping point for the current test
strategy, the location of stopping point is highly dependent on
the statistical model that is chosen to describe the coverage
behavior during the verification process[5][7].

The rapid progress of chip fabrication technology has
given rise to new hardware solutions consisting of chips that
contain whole systems, but the design and the verification of
complicated chips has not advanced rapidly, such chips are
microprocessor, cache controller in a shared memory, bus
controller, and system on chip. To completely verify the chips
in a system level, various verification methodologies have
been developed[19][20]. But there is no research to use
low-level coverage metrics for high-level events. If the low
level coverage metrics cab be used to verify high-level events
instead of developing new high level coverage metrics, the

34 29 720 49ldd) B FEE 59

cost and time can be reduced. Aim of this paper is to search
the possibility to detect high-level events by low-level
coverage metrics.

M. Definition of high-level events

In this paper, the terminology of high-level events is
defined as follows, 1)cooperation between blocks or process
statement in HDL, or 2) algorithms or protocols, that is, a
sequence of performing a job.

Some examples explain it in details. First, when two
components are using a single bus simultaneously, bus
conflict occurs. Second example is data hazard in pipelined
processors. Data hazard consists in data conflict and branch
conflict. Data conflicts can be solved in software or hardware
methods, and solutions in software are to insert no-op
instruction and to reorder instructions. Solutions in hardware
are to stall instruction and to forward data. Branch conflicts
are a little complicated because of conditional branch. Branch
conflicts of unconditional branch can be solved by inserting
no-op, reordering instructions, or inserting stall. Conditional
branch conflicts are dependent on conditions. Three methods
used in unconditional branched are used for unconditional
branches, and additionally annulling and prediction methodscan
be used.

Third example is cache coherence in shared memory.
Multiprocessors have individual caches for each processor
and when two or more caches hold the value of the same
memory location simultaneously, one of them may be
modified, then two values differ each other, this problem is
called cache coherence or cache consistency. Write-through
cache can update main memory but not the other cache, so can
not solve the problem and extra writes to main memory
decrease system performance. Non-cacheable, cache
directory and snooping methods can solve the cache
coherency. During program compilation in noncacheable,
compiler can mark all shared data as non-cacheable andforce
all accesses to this data to be from shared memory. It can
lower the cache hit ratio and reduce overall system
performance. In cache directory, cache controller is integrated

with the main memory controller and directory controller
updates the cache directory. Each cache monitors memory
activity on the system bus in snooping. Popular protocol for
marking and manipulating data within multiple caches is
snooping and MESI protocol has four states, Modified,
Exclusive, Shared, Invalid[21]. Four possible memory access
scenarios are read hit, read miss, write hit, and write miss.

Iv. Classification of high-level event

It is necessary to classify the high-level events in order to
find high-level coverage metrics. Most high-level events are
relevant to protocol or specification-dependent. This paper
proposes that high-level events can be classified into two
categories, that is, resource conflicts and protocol or
specification-dependent conflicts.

Some high-level events are related to resource conflicts as
explained in the previous chapter, for example, data conflicts
in pipeline, bus conflict in arbiter, resource conflicts in
concurrent system, concurrent process statement in VHDL
program. The others are related to protocols, algorithm or a
sequence of performing some operation, for example, branch
conflict, cache coherency, memory access, a sequence of

instruction execution.

V. Coverage metrics for high-level event

This paper proposes how to verify high-level events by
low-level coverage metrics. The events of resource conflicts
can be detected by using statement coverage metric if global
signal or variable has flags in a testbench program and
protocol-dependent conflicts can be checked by data flow or
path cover metrics.’

Data transfer between blocks or process statemments in
VHDL program is done through global signals or variables.
IF it has been known which signals or variables are used as
input or output while VHDL program is being simulated, the
conflicts of resource can be recognize.

499

B AYRREANN A A0 AT

Register file J
4

L v
ID EX

18 4. HloJg| £E8 LIEI= 3 ©A dlo|=zlele
of Al
<Fig. 4> An example of 3 stage pipeline for data
conflicts

<Fig. 4> shows an example of 3 stage-pipeline architecture
of microprocessor that is composed of instruction fetch(IF),
instruction decode(ID), and execute(EX). Assume Register
file used in ID and EX for temporary storage in a
microprocessor has a lot of registers. <Fig. 5>(a) shows each
stage of pipeline has two clock cycles. Address M is sent to
memory for first half cycle of IF stage and the contents of
address M is stored to IR for second half cycle of IF. Consider
two sequential instructions ins1 and ins2 in <Fig. 5>(b). Insl
adds two contents of register R2 and R3, and then writes the
result to register R1. Ins2 is sameto ins1, but R1 is used before
R1 is stored in ins1. If there is not any methods to solve data
conflicts, data conflict occurs between EX stage of insl and
ID stage of ins2 for R1.

. ins] IF2]iD1]ID2EX
1
ins2 EX2
ins3 IF1[IF2ID1|ID2EX1EX2Z

@ EXet ID A Atol2f HiolH &&
{a) Data conflict between EX stage and ID stage

insl :add R1, R2, R3
ins2 : add R4, R1, R5
ins3 : sub R6, R7, F8

b) ol® =z
(b) Example program

ad 5 dole 5 ofA|
<Fig. 5> Example of data conflict

500

<Fig. 6>(a) is a pseudo HDL code. R1 is simultaneously
used in id and ex blocks together, so signal R1 has to be
declared as global signal or variable because R1 is a path to
send or take data. Assume 1 and w flags are inserted in R1
signal in a testbench program. r flag is set when operand R1 is
fetched for ID or Ex stage , and w is set when EX writes a
value to R1. <Fig. 6>(b) is a testbench program for <Fig.
6>(a). In this case, the condition of if statement of testebnch
becomes to 1, so it has been recognized that data conflict
occurs in R1 at that time cycle.

global signal R1;
regfile : process();
if : process();
id : process();
ex : process()
(a) HDL Satz=
(a) HOL pseudo code

RI with r and two w flags;
if((r=1 and (w1=1 or w2=1)) or
(wi=1 and w2=1)
conflict;
(b) BIAEMX] Z23
(o) Testbench program

32 6, HDL 2AlRE Y EAEBR =233
<Fig. 6> HOL pseudo code and Testbench program

It is not easy to check protocol or algorithm-dependent
conflicts, but data flow or path coverage metric can check the
sequence of execution of algorithm. Branch prediction or
snoopy protocol can be expressed as state diagrams. Each
state can be translated to IF or CASE statements. So
protocol-dependent event can be checked by data flow metric
or path metric.

Assume that <Fig. 7>(a) is a stage diagram that execute an
algorithm and it is similar to execute branch instructions in a
MICTOPIOCESSOr. ucn, sjp, scs, and anl in the diagram represent
unconditional jump, short jump, success, and annulling
respectively. This state diagram can be expressed with IF and
ELSE statement in VHDL program like <fig. 7>(b).

a4 B A5 39 Aol die A EE 3

lProcess Begirﬂ

[End Procesﬂ

(@) ¥u2|Eo] st AET
(@) State diagram for an algorithm
process(
begin

if unconditional then
if short jump then

else

end if;
else

if branch success then
if A then
else
end if;

else
if B then

else

end if;
edn if;
end if;
End process:;

(o) VHDL RE
{b) VHDL code for an algorithm

a3 7. ¢neE 5 oA

<Fig. 7> An example of Algorithm conflicts

If the data flow or path has been checked in VHDL code,
the algorithm-dependent conflicts can be verified. The
solution of cache coherency can be expressed in such a state
diagram, so it can be verified by data flow or path metric

VI. Conclusion

This paper defined the terminology of high-level events
and classified it into two classes, resource conflict and
algorithm conflict. They can be verified by low-level metrics.
The methods can reduce time and cost of IC design when they
are used before specification simulation, The high-level event
that has protocol fault itself can’t be detected by proposed
methods. In the future, searching space and searching time for
detection of high-level event will be conducted.

References

[1] Jen-Tien Yen and Qichao Richard Yin, “Multiprocessing
Design Verification Methodology for Motorola
MPC74XX PowerPC Microprocessor,” DAC, pp
718-723, 2000.

{271 Cindy Eisner, et al, “A Methodology for Formal Design
of Hardware Control with Application to Cache
Coherence Protocols,” DAC, pp 724-729, 2000.

[3] Kazuyoshi Kohno, Nobu Matsumoto, “A New Verification
Methology for Complex Pipeline Behavior,” DAC, pp.
816-821,2001.

[41 Wooseung Yang, Moo-Kyeong Chung and ChongpMin
Kyung, "Current Status and Challenges of Soc
Verification for Embedded Systems Market,” IEEE, pp.
213-216, 2003,

[5] Kangchul Kim, “Efficient methods for reducing clock
cycles in VHDL model verificatoin,” Journal of
Electronics Engineers of Korea, V.40-SD, pp39-45,

Dec. 2003.

[61 Michael Keating and Pierre Bricaud, Reuse
Methodology Manual, Kluwer Academic Publishers,
1998

[71 Amjad Hajjar and Tom Chen, “An Accurate Forecasting
Model for Behavioral Model Verification,”

Proceedings of the First IEEE International Workshop

on Electronic Design, Test and Applications, 2002.
[8] Janick Bergeron, Writing Testbenches : Functional

Verification of HDL models, 2nd edition, Kluwer

501

A YA RST8] =24 #1007 A3

Academic Publishers, 2003

[9] Qiushang Zhang and Ian G. Harris, “A Data Flow Fault
Coverage Metric For Validation of Behavioral HDL
Descriptions”, ICCAD, pp. 369-372, 2000.

[10] Rolf Drechsler and Bernd Becker, Binary Design
Diagrams : Theory and Implementation, Kluwer
Academic Publishers, 1998

[11] Edmund M. Clarke, Oma Grumberg, Doron A. Peled,
Mode] Checking, MIT Press, 2000.

[12] Hoon Choi, Byeongwhee Yun, Yuntae Lee, and
Hyungglac Roh, "Model Checking of S$3C2400X
Industrial Embedded SoC Product,” DAC, pp. 611-
616. 2001.

[13] Kevin Skahill, “A Designer’s guide to VHDL design
and verification”, Electronic design, pp. 149-152, Feb.
19, 1996.

[14) W. Howden, "Confidence-based reliability and statistical
coverage estimation”, ISSRE’97, pp 283-291, Nov,
1997.

[15] B. Dickinson, S. Shaw, "Software techniques applied to
VHDL design”, New Electronics, N9, pp 63-65, May
1995.

[16] Jim Lipman, “Covering your HDL chip-design bets”,
EDN, pp 65-74. Oct. 1998.

[17] Martin Abraham, et al, “Optimize ASIC testsuite using
code coverage analysis”, EDN, pp. 149-152, Mat 21,
1998.

[18] Brian Barrera,”Code coverage analysis-essential to a

safe design”, Electronic Engineering, pp 41-43, Nov.
1998.

[19]1 Daniel Geist, et. al, “A Methodology for the verification
of on a System on chip”, DAC, pp 574-579, 1999.

[20] Gilly Nativ, et. al, “Cost evaluation of coverage directed
test generation for the IBM Mainframe”, ITC, pp
793-801, 2001.

[21] John D. Carpinelli, Computer Systems Organization and
Architecture, Addison Wesley, 2000.

502

x| xjotey

>_<'v I_E_o]; VLSI“‘ o]u]]r,]r:,\]/\al /\474]

oo

g

Wayne State University,

AFHTHY 29, WA}

a;}] A skm .g—_}r,}]b‘l-
FEFG, Fu

Wayne State University,
Asbeta wbah

aa dgvsta 2o
AFE TS, Ras

%741 E-oF : RFIC, SoC A7 9 &l 2 ¥

