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ABSTRACT

Both composition and XOR are operations widely used to enhance security of cryptographic schemes. The
more number of random permutations we compose (resp. XOR), the more secure random permutation (resp.
random function) we get. Combining the two methods, we consider a generalized form of random function:
SUM* — CMP= (7, o 0 Ty_1)e41)® -~ ®(m, -~ » x,) where 7 -+, 7%, are random permutations. Given a fixed
number of random permutations, there seems to be a trade-off between composition and XOR for security of
SUM?® — CMP°®. We analyze this trade-off based on some upper bound of insecurity of SUM®-— CMP°, and

investigate what the optimal number of each operation is, in order to lower the upper bound.
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I. Introduction

Composition and XOR operations are important
tools in cryptography to enhance security. They are
used either individually or together in various forms.

Since composing random functions usually weak-
ens security, we will deal with composing random
permutations. Composition of random permutations
has been studied mainly related to block ciphers.
One way to measure the security of a block cipher
is to do its security as a random permutation. Some
of the results show that composition of random per-
mutations produces a more secure random permu-
tation. Especially, Vaudenayls] did by proposing the
decorrelation theory. The theory has been a useful
tool to measure or compare securities of block ci-
phers against other attacks as well as against chosen
plaintext attack.

A basic form of XOR-ing random functions (resp.
permutations) is f,(z)® -+ @f,(z) for independent
random functions (resp. permutations) f,,---,f,. This
results in a random function regardless of whether
its  constituents are random functions or
permutations. For the XOR of independent random
functions, the security has not been precisely ana-
lyzed, however, it does not seem to amplify security.
Myersm proposed its variant and proved that it am-
plifies security. More precisely, if ry,---,r, are in-
dependent uniform random bit strings and fi,--,-f,
are independent random functions, then f,(z®r,)
@ - ®f,(zPr,) is a random function stronger than
each component random function. As a way to build
a secure random function from random permuta-
tions, Lucks™! considered XOR-ing independent ran-
dom permutations, and analyzed the security.

The more number of random permutations we
compose (resp. XOR), the more secure random per-
mutation (resp. function) we get. Considering that a
random permutation itself can be used as a random
function, an immediate question can be, ‘Which
method produces a more secure random function?’
Since random permutations do not resist birthday at-
tack, if one has to select only one method, they will
probably prefer XOR. Thus, a next question can be,

‘Is it more useful to combine the two methods?’
This question was initially asked in view of security,
however, there is another aspect: without parallel
computation, using composition makes the resultant
random function more efficient. There seems to be
a trade-off between the two operations. Given a
fixed number of random permutations, an increase in
the number of compositions means XOR-ing a
smaller number of random permutations that are
more secure than the original ones.

Our goal is to provide as clear (and quantitative)
as possible answers to the above questions by ana-
lyzing the previous results. To do so, we first define

a random function

SUMS_ CMPC: (Trsc e e ﬂ’(s—l)a+1)®
. @(ﬂc 0 ver 0 ﬂ-l),

where sc=m and m,---, 7, are random permuta-

tions on {0, 1}". Note that the latest results on the
composition and XOR of random permutations are
Vaudenay’s in 1998 and Luck’s in 2000",
respectively. Considering that no better result has
appeared in both areas at least for the last five
years, we based on their results upper bound the in-
security of SUM*— CMP* in terms of decorrelation
theory.

For a random function, its decorrelation bias rep-
resents the distinguishability from the uniform ran-
dom function. The upper bound, denoted UB—

DecF* (SUM® — CMP*), on the decorrelation bias
of SUM®° — CMP* is determined by the function

parameters n, s, ¢ the security of 7, and the adver-

sary resource d.

Let f and g be random functions such that
UB— DecFt(f) < UB— DecF(g). Such an in-
equality has played an important role in many cases
of comparing their securities or selecting one of
them, although it does not guarantee that f is more
secure than g. For instance, Moriai and Vaudenay™
made use of those upper bounds in order to compare
several types of block ciphers. They compared the
securities by the computational cost of each scheme
necessary for a specific level of security, more ex-
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actly, for the upper bound to be less than some
value.

In this work, we find the relation between s and
¢ on UB— DecF*(SUM*®— CMP°) according to the

general behavior of n, d m, and the security of ;.

Il . Preliminaries

Let R be the set of all real numbers, and CN the
set of all composite, .positive integers. Let [, =
{0,1 }" be the set of all n-bit strings. For reals a<b,
let {a,b]={z € R:a<z<b}, (a,b)={z €
R:a<z<b}, [gb)={zeR:a<z<b},
and {a,b]={z € R:a <z <b}. For a sequence
of random variables, i.i.d. is the abbreviation for

“independent and identically distributed”.

Definition 1. A continuous function & : [a,b]—R

is called convex if for any distinct points x; and x,

in [a, b] and for any A € (0,1),
Rz, +(1—XN)zy) < Ah(z) + (1= A)h(z,).

If the inequality is strict for all =, z,, and A, then

[ is called strictly convex.

Definition 2. A random function f from I, to I,

is a random variable which takes as values functions
from [ to I, If f takes only permutations with

m=n, it is called a random permutation on [,

" Definition 3. If a random function (resp. random
permutation) has the uniform distribution over all

functions from [, to [, (resp. over all permuta-
tions on 1), it is called the uniform random function

(URF) (resp. uniform random permutation (URP))
and denoted by URF,_,, (tesp. URP,). URF,

means URF,

n—on-

For a security model for random functions, we
consider an adaptive version of the Luby-Rackoff
model, in which the number of adversary’s queries

to an oracle is bounded.
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Definition 4. Given two random functions f and
[, let an oracle O simulate either f or f*. A g-limited
distinguisher for f and f” is a computationally un-
bounded Turing machine DY that outputs either 0 or
1 after a limited number g of interactive queries to O.

The distinguishability between two random func-
tions, f and f°, is quantified by the maximal advant-
age over all g-limited distinguishers D as:

Advi(f,f) =1maxDlPr[Df =1]- Pr[D =1]I.

The decorrelation theory is a set of mathematical
tools which aims at studying and defining the se-
curity of block ciphers in the Luby-Rackoff model.

Definition 5. Given a random function f from 1,
to [, and an integer d, we define the d-wise dis-
tribution matrix [f]* of fas an !X [%-matrix where
the (x, y)-entry of [f]%corresponding to the mul-
ti-points x = (z,, -, 2;) € I* and y= (y;, -, y,)
€ IY is defined as

[f]iyz Prif(z,) =y, for all 1<i<d].

Definition 6. Given two random functions f and

f from I to I, a positive integer d, and a matrix

over the [? X I%-matrix space R%*%,

norm

we define the d-wise decorrelation -distance

>

between f and f° as

Dty (£, £) =14 = [F VIl

Here, if f* is the URF, the distance is denoted by
DecFj.(f) and called d-wise decorrelation bias of
Sunction f. Similarly, if f is a random permutation
and f is tile URP, the distance is denoted by
DecP |(f) and called d-wise decorrelation bias of
permutation f.

By defining a new matrix norm || - ||,, Vaudeny
linked the decorrelation distance between two ran-
dom functions to the maximal advantage of
distinguisher.
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Lemma 19, For any random functions f and f’,

and any positive integer d, we have

DCCﬁ."ll (f;f) =2- Advd(f;f)

From now on, this paper will use only || - |, as
a matrix norm associated with decorrelation dis-
tance. Thus, we will simply write Dec?, DecF®, and

DecP* instead of Decf., DecFj.), and DecPf.,,

respectively.
I. A Random Function and lts Security

When combining XOR and composition oper-
ations, we can think in two ways: XOR-ing after
composing and composing after XOR-ing. Both
ways produce random functions from random per-
mutations, but we will consider only the former be-
cause composing random functions usually dimin-

ishes security.

Definition 7. For positive integers ¢ and s, and

for i.i.d. random permutations 7y, -+, 7,, on I, we
define a random function SUM®— CMP° from I, to

I, as follows:

SUM® — CMP* = (7rsc e e 7T(s—l)c+l)€B
. @(,,rc PR ﬂ]).

In order to get the security of SUM’— CMP*,
we use the following results.

Lemma 2. For any iid. random permutations

T, T,

c

DecP(x, o - o m) < DecP*(m )"

Lemma 3", Let nf,---, 7} be independent URPs
on . For any d<2""!/s,
DecF (1} - ®rf ) <

2 .
ooy, 2

0<:i<d

For feasible handling, we use a simpler form of

alternative to the above boundary formula:

2 5 2d° 1
—_— T
25(n_1)0£i2<d (s+1)2°?~D

Note that the above two terms behave almost in
the same way.
In order to get the security of m,& --- ©m when

not every w; is uniform, the following lemma is

used.

Lemma 4. For independent random permutations

. ’
My oty Mgy My 5", M, ON L“

&Cd(ﬂsea eaﬂ-Uﬂ-sl69 6371-1’)S -Decd(ﬂ'ilﬂ-i’)'

i=

From the above three lemmas, we have the fol-
lowing result.

Theorem S. For positive integers ¢ and s, let
My, ", T, be iid. random permutations on I,.
Using them, define SUM® — CMP*° as in Definition
7. Then, for any d<2" ! /s,

DecF* (SUM* — CMP*)

< d c 2d d 8
< s(DecP (71'1))+S+1( )

2n—1

IV. Trade-off between Composition and XOR

Let m=sc be the number of i.i.d. random permu-
tations, and € the d-wise decorrelation bias of them.
Let UB— DecF'(SUM® — CMP°) denote the upper
bound of DecF?(SUM®— CMP®) in Theorem 5.
Then, it is expressed as UB— DecF*(SUM’ —

m

2ed (i)

— CMP?) =Tt —EE - 15T ) Define a
function f as
_m ., 2z  d %
f(nldlflmlx)_ me +$+m(2n_1)

The following lemma shows that f has a nice
property in some domain of interest.

Lemma 6. For any n € [4,00),d € [1,2"7%],
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e€ (0,1), and m € [1,), f(n,d,e,m,z) is a

strictly convex function in z € [1,m].

4.1 Composition versus XOR

First, we compare SUM'— CMP™ and SUM™—
CMP'. By a straightforward calculation, we obtain
€ € (0,1], determined by (1, d, m), such that
DecP*(m,) < ¢ if and only if UB—DecF® (SUM™
— CMP') < UB— DecF* (SUM" ~ CMP™).

Theorem 7. Define oy and €, as a,(n,d,m) =

4 2d (d

on-1  m41 ‘ogn-1

)m; EO(n)dlm)‘:l if o)

(n,d,m)=m—1, and the root of z"—mz
+ay(n,d,m)=0 in (0,1) otherwise. For any

n€l4,0),de (1,277, and m € [Ln],

f(n,de,m,1) < f(n,d, e,m,m)
for all 0 <€ < €y(n,d,m);

fln,de,m,1)=f(n,de,m,m)
for € =¢,(n,d,m);

f(n,d,e,m,1) > f(n,d, e,m,m)
for all €;(n,d,m) <e <1,

When m is a prime number, the only comparable
forms are SUM'— CMP™ and SUM™ — CMP".
From now on, we focus on composite numbers m.
For any of such m’s, there exists at least one factor
(other than the trivial factor 1) of m not greater than
v/m. The following theorem shows that, in most
cases of (n, d, m), UB— DecF'(SUM® — CMP®)
< UB— DecF (SUM™ — CMP") for all factors ¢
of m such that 1 < ¢< +/m regardless of the value
of DecP?(w,).

Theorem 8. For any n € [16,), d € [1,2"?]
(tesp. d € (2%42"")), ee[27",27%], and
m € [9,n] (@esp. m € [49,n)]), f(n,dem,z)
< f(n,d,e,m,1) for all z € (1, vVm].

Proof For n e [16,0),de [1,2" %], c e
[27™272], and m € [4,n], define g(n,d,e,m)
=f(n,d,e,m,1) — f(n,d,e,m, v/m). We will
show that g(n,d,e,m) >0 for all n € [16, o),
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d € [1,2?] (resp. d e (222"4)), ec[27",
27%], and m € [9,n] (resp. m € [49,n]).

Then, to combine this with Lemma 6 gives the
desired results. By a straightforward calculation, we
have the slopes of g for each d, €, m as follows.

For all n e [16,),de [1,227!], e [277, 2—2],

and m € [4,n], () -g—g—(n,d,e, m) <0; (b)

99 . 09
e (n,d,e,m) > 0; (c) o (n, d,e,m) > 0.

Since 1 < 2% < 25V4<2™"* for all n>16, the
theorem statement is obtained by the following due
to (a), (b), and (c): g(n,2%,2°9)>0 and
g(n, 254,27, 49) > 0 for all n=16. W

4.2 Optimal Number of Compositions

Theorem 8 says that composition helps XOR to
lower UB— DecF'(SUM* — CMP*) either when
1<d<2"” and 9<m<n or when 2"% < d < 2*/
and 49<m<n. Then, what is the number of com-
positions to obtain the minimum value for these (d,
m)’s? This number occurs at every factor of m be-
tween the second smallest one and m. This section
analyzes concretely how the optimal number of
compositions is related to (n,d,e,m), from which
the optimal number of XORs follows immediately
due to m=sc.

Notation. For a positive integer m, let FAC(m)
denote the set of all factors of m, and let m, be the
second smallest factor of m, m, the greatest factor
of m not greater than /m, and m, the smallest fac-
tor of m not less than /m. Namely, m, = min (1,
m]NFAC(m), my=max|[l, ym]NFAC(m),
and m, = min [vm, m]NFAC(m).

Given (n,d,e,m), the minimum of f(n,d,e,
™, T) occurs at a single point z € [1,m] because
of Lemma 6, but can occur at more than one point
x € FAC(m). Thus, we define G, as the set of all
factors of m where f has the minimum:
G={cy € FAC(m): f(n,de,m,cy)<f(n,d,ce,
m,c) for all ¢ € FAC(m)}. G is determined by
(n,d,e,m), and the number of its elements is ei-

ther one or two. The following theorem finds the
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value, €;, of DecP?(m,) which is used to determine

whether G is inside [1,m,] or inside [m, m].

Theorem 9. Define o; and ¢ as o, (n,d,m) =

2d d \vm n2"—1,
(\/ﬁH)g(zn_]) 1+ (vm+1)1 7] );

e (n,d,m)=1if o, (n,d,m)=1, and the root of

e/ (Vmlnz—1)+a,(n,dm)=0 in (0,1)

otherwise. For any n € [4,00),d € [1,2"7*], and
m € [1,n]NCN, we have G, c[l,m,] for all
0<e<e(n,dm) and C,Clm,m]| for all
6 (n,dm)<e<l,

Proof. Fix ne4,0), de[1,277%], and m
€ [1,n]NCN. Put ;= o, (n,d,m) and ¢ =

€ (n,d,m). Define a function k(¢) on (0,1) as

k(e) = %% (n,d,e,m, vym) = V" (y/mlne — 1) +

;. Then, k(e) is decreasing on (0,1), limk(e) =
e

a; >0, and tmk(e) =a;—1. If o, —1=0, then

e—l1
k(e) >0 for all € €(0,1)=1(0,¢,). Otherwise,

there exists uniquely €; € (0,1) such that

k(e) >0 for all € € (0,¢,) =(0,¢);
k() =0 for all e =€, =¢;
k(e) <0 for all e € (€},1) = (e, 1).

Therefore, %% (n,d,e,m, vm)=0 if and only if
0<e<g.

Case 1. 0 < e<e;: Since —g-i—(n,d,e,m, Vm)
>0, we have f(n,d,c,m,mu) <f(n)d1€;m;c)
for all c& (m,m]NFAC(m), and hence
G < (L,m,].

Case 2. €, < € < 1: Since %i—(n,d,é,m, vm)
< 0, we have f(n,d,e,m,m,) < f(n,d,e,m,c) for
all ¢ € {1,m)NFAC(m), and hence G, C [m,,
m]. |

Note that () is composed of a single element,

say ¢y, in general. Recall f(n,d,em,z)=

m

My 240 d o ye g€ [1,m] be the

T z+m “9n1

point where f(n,d,e,m, + ) has the minimum. The

value of f(n,d,e,m,z) at z€ [1,z,] (resp. at

z € [zy,m]) depends mainly on %ez (tesp. on

2dr_(_d v M i
a:+m(2"_1) ). At every z € [1,m], - ¢ 1san
o . dr_, d G
increasing function in (¢, m ), and m+m(2n—1 )

is an increasing function in d and a decreasing func-
tion in m. Therefore, ¢, tends to increase as d de-
creases, and m and € increase, and to decrecase as d
increases, and m and € decrease.

Consider the case where we are given random
permutations. In this case, € = DecP?(m,) is an in-
creasing function in d. This implies that ¢, should

be observed when both d and € move in the same
direction. Therefore, we combine Theorem 8 with
Theorem 9 for relatively small d’s and €’s in the
following corollary: in most cases, the optimal num-
ber of compositions occurs between m, and m,, for
m;’s with DecP?(m;) =<¢€,. Here, €, is easier to

compute than ¢;.

Corollary 10. Define ¢,(n,d,m) = min {277,

271—-1
p (2d(1+(ﬁ+1)1n 7 ))71%}' For eny
T (nym+1)(v/m+1)
n € [16,0), d € [2,27?] (resp. d € (2*2, 2°"4)),
m e [9,n]NCN (resp. m € [49,n]NCN), and

€ € 27" e (n,d,m)], we have G C {my,m,].

Proof. Recall a; and ¢; from Theorem 9. We
will show that 2 "<e,(n,d,m)<¢ (n,d,m)
holds for all (n, d, m). Then, the conclusion follows

from Theorems 8 and 9.
Fix n €[16,00c) and m € [9,n]. Note that

n—1

2 1

d (Zd(l—f—(\/ﬁ-i—l)ln i ))\/77 -
gnt (nvm+1)(vVm+1)

for all d e [2,2°4], which is implied by
2V (Vi + 1)< (Vm+ 1) (22—
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vm(y/m+1))m. Therefore, we have ¢, (n,d,m)
>9-n for all d € [2,254).

Fix d € [2,2"%]. Put o, = 0, (n,d,m), €, = ¢,
(n,d,m), and € = €, (n,d,m). Choose € € [27",

€,]. We will show that ¢ € [27",¢,]. Since e=27",
we have 2L (n,d,e,m, Vi) = — M (1~ yimln
)+ = —(nym+1)e"™ +a,Note that — (n

e
Vm+1)zY"+a,>0 for all 0<z< (—=—)Y"

’

\/_+1

and that 27" < e < =min {272 (—=2—)V"}.

n\/_+1
Hence, 2L (n,d,e,m, v/m)=0. Since 79-_% (n, d,w,

> oz
m, vm) is a decreasing function in w € (0,1),
€ € [27",¢;] holds by the definition of ¢;, from
which €,<¢, follows. |

V. Concluding Remarks

The exact securities of composition and XOR of
random permutations (i.e. DecF?(SUM! — CMP™),
DecF* (SUM™ — CMP') in this paper) are not
known yet. Thus, their upper bounds (i.e. UB-
DecF *(SUM" — CMP™), UB~- DecF *(SUM™
— CMP')) can be used as an important data when
we select one of the two methods. This paper has
analyzed the trade-off between- s and ¢ in
UB— DecF *(SUM° — CMP®), where sc=m and
SUM?® — CMP® = (T, o © T(y_1)es1)D - @B
(m, e+ m) for iid. random permutations T;’s:
for most (n, d, m)’s under consideration, we have

shown the following.

(@ UB— DecF*(SUM™ — CMP") < UB—
DecF(SUM"* — CMP™)if and only if DecP*
DecP®(m,) < .

(b) Regardless of the security of m;,, UB—
DecF* (SUM* — CMP°) < UB— DecF* (SUM™ —
CMP*') for every c satisfying 1 < c¢< \/m.

(©) If DecP*(m) < ¢, the optimal ¢ is tightly
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bounded above by m,, (the smallest factor of m not

less than 4/m) and below by m, (the second small-

est factor of m).
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