I/Q 위상 불균형을 고려한 Uniform M-PSK의 일반화된 BER 성능 분석

Generalized BER Performance Analysis for Uniform M-PSK with I/Q Phase Unbalance

  • 이재윤 (한양대학교 전자통신컴퓨터공학부) ;
  • 윤동원 (한양대학교 전자통신컴퓨터공학부) ;
  • 현광민 (원주대학 정보통신과) ;
  • 박상규 (한양대학교 전자통신컴퓨터공학부)
  • 발행 : 2006.03.01

초록

본 논문에서는 2차원 결합 가우시안 Q-함수(Two-dimensional joint Gaussian Q-function)를 이용하여 AWGN(Additive White Gaussian Noise) 환경에서 M-PSK(M-ary Phase Shift Keying) 신호의 I/Q 위상 불균형(Phase unbalance) 존재 시 수치 적분이 필요 없는 정확하고 일반화된 closed-form 형태의 비트 오류율(Bit Error Rate) 표현을 유도한다. 새롭게 유도된 표현은 평균 BER 뿐만 아니라 k-번째 비트의 BER에 대하여도 일반화된 식으로 되어 있어 다양한 환경으로의 적용이 용이하여 M-PSK를 적용하는 많은 디지털 통신 시스템에서 복조 시 발생할 수 있는 I/Q 위상 불균형에 의한 시스템 성능 변화에 대하여 정확한 이론적 성능 기준을 제공할 것으로 기대된다.

I/Q phase unbalance caused by non-ideal circuit components is inevitable physical phenomenons and leads to performance degradation when we implement a practical coherent M-ary phase shift keying(M-PSK) demodulator. In this paper, we present an exact and general expression involving two-dimensional Gaussian Q-functions for the bit error rate(BER) of uniform M-PSK with I/Q phase unbalance over an additive white Gaussian noise(AWGN) channel. First we derive a BER expression for the k-th bit of 8, 16-PSK signal constellations when Gray code bit mapping is employed. Then, from the derived k-th bit BER expression, we present the exact and general average BER expression for M-PSK with I/Q phase unbalance. This result can readily be applied to numerical evaluation for various cases of practical interest in an I/Q unbalanced M-PSK system, because the one- and two-dimensional Gaussian Q-functions can be easily and directly computed using commonly available mathematical software tools.

키워드

참고문헌

  1. R. F. Pawula, S. O. Rice and J.H. Roberts, 'Distribution of the phase angle between two vectors perturbed by Gaussian noise,' IEEE Trans. Commun., vol. 30, pp. 1828-1841, Aug. 1982 https://doi.org/10.1109/TCOM.1982.1095662
  2. J. W. Craig, 'A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations,' in IEEE MILCOM'91 Conf. Rec., pp. 25.5.1-25.5.5, Boston, 1991
  3. M. K. Simon and D. Divsalar, 'Some new twists to problems involving the Gaussian probability integral,' IEEE Trans. Commun., vol. 46, pp. 200-210, Feb. 1998 https://doi.org/10.1109/26.659479
  4. M. K. Simon, 'A simpler form of the Crsig representation for the two-dimensional joint Gaussian Q-function,' IEEE Commun. Lett., vol. 6, pp. 49-51, Feb. 2002 https://doi.org/10.1109/4234.984687
  5. J. Lassing, E. G. Strom, E. Agrell and T. Ottosson, 'Computation of the Exact Bit Error Rate of Coherent M-ary PSK with Gray Code Bit Mapping,' IEEE Trans. Commun., vol. 51, pp. 1758-1760, Nov. 2003 https://doi.org/10.1109/TCOMM.2003.818102
  6. P. K. Vitthaladevuni and M. S. Alouini, 'Exact BER Computation of Generalized Hierarchical PSK Constellations,' IEEE Trans. Commun., vol. 51, No. 12, pp. 2030-2037, Dec. 2003 https://doi.org/10.1109/TCOMM.2003.820748
  7. S. Park and D. Yoon, 'An alternative expression for the symbol error probability of MPSK in the presence of I/Q unbalance,' IEEE Trans. Commun., vol. 52, issue 12, pp. 2079-2081, Dec. 2004 https://doi.org/10.1109/TCOMM.2004.838737
  8. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series: U.S. Department of Commerce, 1982
  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 1965
  10. Visual Numerics, Inc., IMSL C Numerical Library (CNL) User's Guides, version 5.5, retrieved from: http://www.vni.com/products/imsl/docum entation/index.html, 2003