References
- 이승천 (2005). 이항비율의 가중 Polya posterior 구간추정, <응용통계연구> 18, 607-615 https://doi.org/10.5351/KJAS.2005.18.3.607
- 정형철, 전명식, 김대학 (2003). 모비율 차이의 신뢰구간들에 대한 비교연구, <응용통계연구> 16, 377-393
- Agresti, A. and Coull, B. A. (1998). Approximation is better than 'exact' for interval estimation of binomial proportions, The American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
- Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, The American Statistician, 54, 280-288 https://doi.org/10.2307/2685779
- Anbar, D. (1983). On estimating the difference between two probabilities with special reference to clinical trials, Biometrics, 39, 257-262 https://doi.org/10.2307/2530826
- Beal, S. L. (1987). Asymptotic confidence intervals for the difference between two binomial parameters for use with small samples, Biometrics, 43, 941-950 https://doi.org/10.2307/2531547
- Blyth, C. R. and Still, H. A. (1983) Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116 https://doi.org/10.2307/2287116
- Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133
- Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, The Annals of Statistics, 30. 160-201 https://doi.org/10.1214/aos/1015362189
- Chan, I. S. F. and Zhang, Z. (1999). Test-based exact confidence intervals for the difference of two binomial proportions, Biometrics, 55. 1202-1209 https://doi.org/10.1111/j.0006-341X.1999.01202.x
- Feller, W. (1968). 'An introduction of probability theory and its applications, volumn I, Wiley, New York
- Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter, Journal of the American Statistical Association, 74, 894-900 https://doi.org/10.2307/2286420
- Ghosh, M. and Meeden, G. D. (1998) 'Bayesian methods for finite population sampling, Chapman & Hall, London
- Mee, R. (1984). Confidence bounds for the difference between two probabilities, Biometrics, 40, 1175-1176
- Meeden, G. D. (1999). Interval estimators for the population mean for skewed distributions with a small sample size, Journal of Applied Statistics, 26, 81-96 https://doi.org/10.1080/02664769922674
- Newcombe, R. (1998a) Two-sided confidence intervals for the single proportion: Comparison of seven methods, Statistics in Medicine, 17, 857-872 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
- Newcombe, R. (1998a) Interval estimation for the difference between independent proportions: Comparison of eleven methods, Statistics in Medicine, 17, 873-890 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
-
Santner, T. J. and Snell, M. K. (1980). Small-sample confidence intervals for
$P_{l}\;-\;P_{2}\;and\;P_{1}/P_{2}\;in\;2\;{\time}\;2$ contingency tables, Statistics in Medicine, 17, 873-890 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I - Vollet, S. E. (1993). Confidence intervals for a binomial proportion, Statistics in Medicine, 12, 809-824 https://doi.org/10.1002/sim.4780120902
- Wilson, E. B. (1927). Probable inference, the law of succession and statistical inference, Journal of the American Statistical Association, 22. 209-212 https://doi.org/10.2307/2276774
Cited by
- A Bayesian approach to obtain confidence intervals for binomial proportion in a double sampling scheme subject to false-positive misclassification vol.37, pp.4, 2008, https://doi.org/10.1016/j.jkss.2008.05.001
- The Role of Artificial Observations in Misclassified Binary Data with Common False-Positive Error vol.25, pp.4, 2012, https://doi.org/10.5351/KJAS.2012.25.4.697