Journal of the Korean Statistical Society (2006), 35: 1, pp 49-61

TIGHT ASYMMETRIC ORTHOGONAL ARRAYS OF
STRENGTH 2 USING FINITE PROJECTIVE GEOMETRY

M. L. AGGARWAL!, LIH-YUAN DENG? AND MUKTA D. MAZUMDER3

ABSTRACT

Wu et al. (1992) constructed some general classes of tight asymmetric
orthogonal arrays of strength 2 using the method of grouping. Rains et al.
(2002) obtained asymmetric orthogonal arrays of strength 2 using the con-
cept of mixed spread in finite projective geometry. In this paper, we obtain
some new tight asymmetric orthogonal arrays of strength 2 using the concept
of mixed partition in finite projective geometry.
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1. INTRODUCTION

Rao (1973) introduced asymmetric orthogonal arrays which have found nu-
merous applications for quality improvements in the context of the industrial
experiments as pointed out by Taguchi (1987). An asymmetric orthogonal ar-

ray OA(N,lc,m}lcl X m§2 X o0 X mﬁ'",t) is an array of size N x k where k =
k1 + ko + - + k, is the total number of factors in which k; columns have my
symbols ranging from {0,1,...,m; — 1}, the next ky columns have my sym-

bols ranging from {0,1,...,m2 — 1} and so on with the property that in any
N x t subarray every possible ¢ tuple occurs an equal number of times as a
row. An OA(N,k,m™ x mk2 x ... x mk» 2) attaining Rao’s bound N > 1 +
ki(mi — 1) + ka(mz — 1) + - -+ + ky(my — 1) is called tight. The special case
mp = mg = --- = m, = m, (say) corresponds to a symmetric orthogonal array,
denoted by an OA(N, k,m,t).
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Rao (1947,1949) and Hamming (1950) have constructed tight symmetric or-
thogonal arrays of strength 2 in the context of fractional factorial experiments
and linear codes. One may refer to Hedayat et al. (1999) and Dey and Muk-
erjee (1999) for more details. Various methods of construction of asymmetric
orthogonal arrays of strength 2 have been given by Wang and Wu (1991), He-
dayat, Pu and Stufken (1992), Dey and Mukerjee (1998), DeCock and Stufken
(2000) and Zhang, Pang and Wang (2001). Mukerjee et al. (2001) constructed
minimum aberration designs for mixed factorials in terms of complementary sets
using the concept of finite projective geometry. Wu et al. (1992) construced some
general classes of tight asymmetric orthogonal arrays using the method of group-
ing. Suen et al. (2003) constructed some tight asymmetric orthogonal arrays of
strength 2 through finite projective geometry. Rains et al. (2002) have also con-
structed some tight asymmetric orthogonal arrays of strength 2 using the concept
of mixed spread in finite projective geometry and have called them as geometric
orthogonal arrays. Wu et al. (1992) proposed several methods of partitioning to
obtain tight asymmetric orthogonal arrays of strength 2. Here we are trying to
explore the theories in finite projective geometry for finding several partitions to
obtain tight asymmetric orthogonal arrays. Mainly, three types of partitioning
we have discussed in this paper, where one of the methods of partitioning is a
special case of a partitioning given in Wu et al. (1992).

In this paper, we construct some new tight asymmetric orthogonal arrays of
strength 2 using mixed partition. Recently partitions of finite projective spaces
have received considerable attention. Baker et al. (1999a, b), Bonisoli et al. (2000)
and Bierbrauer et al. (2001) studied the mixed partition of finite projective ge-
ometry. In Section 2, we give some preliminaries of finite projective geometry and
in Section 3, we construct some tight asymmetric orthogonal arrays of strength
2.

2. FINITE PROJECTIVE GEOMETRY

A finite projective geometry of (r — 1) dimension PG(r — 1,m) over GF(m),
Galois field of order m, m is a prime power, consists of the ordered set (xg, x1, . . .,

zr—1) of points where z;, + = 0,1,...,r — 1, are elements of GF(m) and all of
them are not simultaneously zero. For any A € GF(m) (A # 0), the point
(Azo, ..., Azy—1) represents the same point as that of (zg,...,zr—1). All those

points which satisfy a set of (r—¢—1) linearly independent homogeneous equations
with coefficients from GF(m) (all of them are not simultaneously zero within the
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same equation) is said to represent a t-flat in PG(r — 1,m).

In particular a 0-flat, a 1-flat, ..., a (r — 2)-flat respectively in PG(r — 1,m)
are known as a point, a line ..., a hyperplane of PG(r — 1,m). The number of
points lying on a (t—1)-flat in PG(r —1,m) is (m*—1)/(m—1) and the number of
independent points lying on a (¢t — 1)-flats is ¢. A s-spread F of PG(r —1,m) is a
set of s-spaces which partitions PG(r — 1, m); that is, every point of PG(r —1,m)
lies in exactly one s-space of F. Hence any two s-spaces of F' are disjoint. One
may refer to Hirschfeld (1998) for more details. A non-uniform partition of a
finite projective geometry is known as a mixed partition of a finite projective
geometry. These partitions differ from the spreads, essentially; in the sense that
underlying projective geometry is splitted into different spaces; more specifically
the members of the partitions may not have the same geometric structure. The
points of PG(r — 1,m) can always be divided into n disjoint flats, i.e. a (u; — 1)-
flat, ..., a (up, — 1)-flat if ug +ug + - +up =7, u; > 1.

3. CONSTRUCTION OF ORTHOGONAL ARRAY

Wu et al. (1992) constructed tight asymmetric orthogonal arrays of the type
OA (m™,k+ 37y ngym® x (m™)™ x - x (m7)™, 2), Si_irj < r, using the
method of grouping where

=37 N J
n;<m =1, if r—>3 r;>r; and
i=1
a j
nj <1, if r—>3 rm<r;.
i=1

Here we construct tight asymmetric orthogonal arrays of the type OA(m",n +
¢, (m¥) x- -« x (m¥*) xm¢, 2) using the concept of disjoint flats in finite projective
geometry where

Ur+uz+ -+ U =1,

In other words, the first r independent columns z,...,z, in the array can be
partitioned into n mutually exclusive sets each containing wi,...,u, columns
respectively, to generate mutually exclusive sets of points containing a (u; — 1)-
flat, ..., a (up, — 1)-flat in PG(r — 1,m). It is a special case of Theorem 4 in Wu
et al. (1992).

THEOREM 3.1. Consider PG(r-1,m) over GF(m). Let n < r be any integer
such that uy +ug+ - +up =71 forallu; > 1, 1 =1,2,...,n, then there exists
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(u1 — 1)-flat, (ug — 1)-flat, ..., (un — 1)-flat, which are disjoint in PG(r-1,m). If
w, >1,1=1,2,...,n, >4, then by using disjoint (u1 — 1)-flat, ..., (up — 1)-
flat, one can construct a tight asymmetric OA(m”™,n + ¢, (m"!) x (m¥2) x --- x
(m¥) x m¢,2) where ¢ ={(m” —1) - > ,(m* —1)}/(m —1).

=

Proor. Consider (u; —1)-flat, (ug — 1)-flat, ..., (up—1)-flat foru; > 1, i =
1,2,...,n, such that u; +ug + -+ +up, =7 in PG(r — 1,m). Let P, Ps,..., P,
be the set of points containing (u; — 1)-flat, ..., (u, — 1)-flat in PG(r — 1,m)

respectively. The cardinality of P; is (m% —1)/(m—1) fori =1,2,...,n. Let P be
a set of points in PG(r—1, m) excluding the points of (u3 —1)-flat,(uz—1)-flat, ...,
(un—1)-flat. The cardinality of P is {(m"—1)=Y_7" (m%* —1)}/(m—1) = c (say).

g

Let Gq,Ga,...,G, and R be the matrices whose columns are the points of
the sets P, P, ..., P, and P respectively. Let G = [G1|G2|- - - |Gn|R] be of order
r(m"—1)/(m—1). G1,Ga,...,Gy, and R are disjoint matrices since Py, Pa,..., P,
and P are all mutually exclusive. The rank of matrix G has full row rank r
because the columns of G are the points of PG(r — 1,m). Consider the matrix
Gi, 1=1,2,...,n, which is of order r(m¥ — 1)/(m — 1). The rank of the matrix
G;is ui, 1 = 1,2,...,n, since columns of G; are the points lying on a (u; — 1)
flat, « = 1,2,...,n, in PG(r — 1,m), where only u;, ¢ = 1,2,...,n, points are
independent, and also u; +us+- - -+u, = r. Thus generating the row space of G;,
we have m” rows but only m", ¢ = 1,2,...,n, rows will be distinct. We identify
the distinct rows with m%, ¢ = 1,2,...,n, symbols. It is obvious that each
symbol is repeated m” % times in each row of the matrix G;, ¢ = 1,2,...,n. Next
we have to show that we will get an asymmetric orthogonal array by generating
the matrix G.

From the earlier paragraph we observe that each of the symbol occurs equally
often in each of the row when the matrix G is generated.

Now, we consider the row space of matrix G. Then each symbol appears equal
number of times with respect to column and also the number of times each of the
ordered pair (say column ¢ and column ¢’ in the row space of G, i # i') appears

as same as _
number of rows in the array

symbol in column ix symbol in column 7'
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Hence, by using the result of the Theorem 11.25 given in Hedayat et al. (1999)
we get an OA(m",n + ¢, (M*) x (M¥2) x --- x (m¥*) x m¢,2). That is,

- m’ —1 2 omt — 1
1+Zm“z—n+c(m—1):m’", Wherec:m_l_ Z m—l .
i=1

1=1

This asymmetric orthogonal array is tight since it attains Rao’s bound. We
explain Theorem 3.1 with the help of examples.

Ezxample 1. Consider PG(4,2) over GF(2). Here r = 5, m = 2. Using Theorem
31, ui+up =5 =>u; = 2,up = 3 and n = 2. Py is the set of points of 1-flat
in PG(4,2), that is P, ={00100, 01000, 01100}. P; is the set of the points of
2-flat in PG(4, 2), that is P,={00001, 00010, 00011, 10000, 10001, 10010, 10011}.
Thus P={00101, 00110, 00111, 01001, 01010, 01011, 01101, 01110, 01111, 10100,
10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}.
Now G; and G3 and R are the matrices of order 5 x 3, 5 x 7 and 5 x 21,
respectively. Also G = [G1|G2|R]. Now, generating the matrix G and identifying

0oo0o0/0001111/000000000111111111111
61100000O0O0O00O0111111000011111111
1010000000111 000111111100001111
6006/j0110011{]011011011001100110011
0006/1010101{j101101101010101010101

the rows of G; and G4 with symbols as 0,1,2,3 and 0,1,2,...,7, respectively, we
have the following matrix:

010 0 000 00001111111 11111
100 001111110 00011111 111
2 0f1172100011111 1100001111
0 2y012101 101160011001 10011
0 3/ 011 011010101010 10101
110 00111111111 100000000
2141110 0011100001 1110000
6 4011011011110 011001 1 00
6 5,120 1101101101101 0101010
3 0/j121 1111900011111 1110000

{continued)
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(continued)
1 2611100100001 111001100
1 310 10 10 010 010110101010
221100 01110011000 0111100
23,6101 61010101 0O01O01 1010
o 6/(/121 011101 100110011001 10
3 1]J]1 111110 0O0OTO0OOOCOUOOOOTI1I 1 11
1 4/0 11100 1001100600110 011
1 5(1r01 010 010101001 010101
2 4120 0 01 1100O0O0CT1111 000011
25/01 01 01 01 0010110100101
0 74721 0 1101101001 1O0O0110601
3 2yr0 6 100 011110 011000011
3 3(6 1.0 06 101 01 101010100101
1 6/2 10 60 01 001 0110 1 00110 01
26/00 1110001 1001011010901
3 4710 01 00 011 001100111100
3 /0 1 0 01 01 01 0101 O01O0O0T110T1°O0
2 7{¢ 011210 0 0 1011010010110
3 6,0 0 1. 00 1110100110010 1 10
1 741710 001 0011001011001 10
3 7{0 01 0 01100 011001101001
| 0 0/0 0 0 O OO O OOOOUOOOOOOGOCOOCOCO J

which is an OA(2%,23,(22) x (23) x 2%1,2). This orthogonal array attains the
Rao’s bound.

Ezample 2. Consider PG(3,3) over GF(3). Here 7 = 4, m = 3. Using Theorem
31, up+us=4=u =uo =2 and n =2. P, and P, are the set of two distinct
1-flat in PG(3, 3), that is P;={0010,1100,1110,1120}, P,={0001,0110,0111,0112}.
Thus P= {0011, 0012,0100, 0101, 0102, 0112, 0120, 0121, 1000, 1001, 1002, 1010,
1011, 1012, 1020, 1021,1022, 1101, 1102, 1111, 1112, 1121, 1122, 1200, 1201, 1202,
1210, 1211, 1212, 1220, 1221, 1222}

Now, G; and G2 and R are the matrices of order 4 x 4, 4 x 4 and 4 x 32
respectively. Also G = [G1|G2|R] has order 4 x 40. Now generating the matrix
G and identifying the rows of Gy and G2 with symbols as 0,1,2,3,...,8, we get
tight OA(3%, 34, (32)% x 332,2). We give some more tight asymmetric orthogonal
arrays of strength 2 in Table 3.1.

We can get some new tight asymmetric orthogonal arrays of strength 2 using
Theorem 3.1 and contractive replacement method (CRM) given in Hedayat et al.
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TABLE 3.1 Tight asymmetric orthogonal arrays of strength 2

S. No. | PG(r—=1,m) | u1,uz,...,Un Orthogonal Array
1. PG(3,2) uy = ug = 2 OA(24,11,(22)? x 2°,2)
2. PG(4,2) up = 2,u2 =3 0A(2°,23,(2%) x (2°) x 22%,2)
3. PG(5,2) UL = Uz = uz = 2 0A(2°,57,(2%)% x 2°%,2)
4. PG(5,2) ur = 2,u2 =4 0A(2°5,47,(2%) x (2*) x 2%°,2)
5. PG(5,2) ur =up =3 0A(2°%,51, (2%)% x 2%9,2)
6. PG(6,2) Ul =uz = 2,usz = 3 OA(27,117,(2%)% x (2%) x 214)2)
7. PG(6,2) wi=2u2=5 OA(27,95,(2%) x (2°) x 2%3,2)
8. PG(6,2) u =3ux =4 0A(27,107, (2%) x (2%) x 219%,2)
9. PG(7,2) w =uz = uz =uq = 2 | OA(2%,247,(22)* x 22%,2)
10. | PG(7,2) u =u2 = 2,uz =4 OA(2%,237,(2%)? x (2%) x 2%°%,2)
11. | PG(7,2) u =2,ur = uz =3 OA(2%,241, (2%) x (2%)% x 2%38,2)
12. | PG(7,2) ur =2,uz = 6 OA(2%,191,(2%) x (2°) x 2189, 2)
13. | PG(7,2) ur =3,up =5 0A(28,219, (2°) x (2°) x 2%17,2)
14. PG(7,2) uy = uz = 4 OA(28,227,(2*)* x 22%°,2)
15. | PG(3,3) UL = uz = 2 OA(3%,34,(3%)% x 3%22)
16. | PG(4,3) ur = 2,up = 3 OA(3°,1086, (3%) x (3%) x 3%42)
17. PG(3,4) up = uz =2 OA(4%,77,(4%)? x 47°,2)
18. PG(3,5) U = u2 = 2 OA(5%, 146, (5%)% x 54 2)

59

(1999). Here we will state the contractive replacement method. Let A be an
orthogonal array OA(N,n,m; X mg X - -+ X My, 2), where m;’s are not necessarily
all distinct, such that for a subset of p factors, say the first p, the runs of the
array obtained from A by removing n — p factors consist of N/N; copies of each
X mp,2) say B, which is tight. After
labeling the runs of B by 0,1,..., N7 — 1, we replace each level combination of

of runs of an OA(Ny,p,m1 X mg X ---

the first p factors in A by corresponding label of B. The resultant one is an
OA(N,n —p+ 1, Ny X Mpp1 X -+ X My, 2).

Now we construct tight asymmetric orthogonal arrays of strength 2 using the
above replacement method and Theorem 3.1. Here CRM can be regarded as a
method of finding partitions. Because the orthogonal arrays A are of specific type
originated from Theorem 3.1 and any tight p columns in A, i.e. tight orthogonal
arrays B is corresponding to the points of a (¢ — 1)-flat where ¢ = 2,3,... in
PG(r — 1,m).

Consider OA(2",L,2,2), L = (m" — 1)/(m — 1). For maximal number of
mutually exclusive lines in OA(2", L, 2, 2), the maximal number of disjoint 1-flats
(lines) in PG(r — 1,2) depends on r. If r is even, 3|(2" — 1), (where the number



56

M. L. AGGARWAL et al.

of points in any 1-flat is 3), then there are (2" — 1)/3 mutually exclusive 1-flats
in PG(r — 1,2). Let PG(5,2). Here r = 6.

(¢)

(b)

Let u; = 2, ug = 4, then OA(25,47,(22) x (2%) x 2%5,2). Let A= OA(26,47,
(22) x (2%) x 2%5,2) and B= OA(4, 3, 2, 2). Using CRM we get OA(25,17,
46 x 16,2) which is included in Rains et al. (2002).

Let u; = ug = 3, then OA(2%,51, (2%)2 x 24%,2). Let A = OA(25,51, (2%)2 x
249.2), B = 0A(4,3,2,2). In array A, there are two 2-flats and 49 points.
Also there are 9 disjoint 2-flats in PG(5,2). Thus 49 points of the array
correspond to 7 disjoint 2-flats, i.e. 15 disjoint lines and 4 points. Hence
using CRM we get OA(2%,21,8% x 41° x 24,2) which is included in Rains
et al. (2002).

For maximal number of mutually exclusive planes in OA(2",L,2,2), the
maximal number of disjoint 2-flats (planes) in PG(r — 1,2) depends on r.
Here, if 3|7, then there are (2" — 1)/7, (where the number of points in any
2-flat in 7) mutually exclusive 2-flats in PG(r — 1, 2).

Let uy = ug = uz = 2, then OA(2%,57, (22)3 x 254 2). Let A = OA(28,57,
(22)3 x 2°4)2) and B = OA(8,7,2,2). In array A there are 3 1-flats and
54 points. In PG(5,2), there are 9 disjoint 2-flats. The 3 1-flats can be
obtained from 3 disjoint 2-flats. Thus 9 2-flats can be divided into 6 2-
flats, 3 1-flats and 12 points. The 54 points in the array correspond to
the points of 6 disjoint 2-flats and 12 points. Hence using CRM we get
OA(25,21, 85 x 43 x 2'2 2) which is not included in Rains et al. (2002) and
hence a new orthogonal array.

Let u; = 2, up = 4, then OA(26,47, (2%) x (2%) x 2%5,2). Let A =
OA(2%,47,(2%) x (2%) x 2%,2) and B = OA(8,7,2,2). There are 1 3-flat,
1 1-flat and 45 points in array A. In PG(5,2), there are 21 disjoint lines.
Also one 3-flat can be obtained from the unions of 5 disjoint lines. Thus
the 45 points of PG(5,2) are the points of 15 disjoint lines. From these
15 disjoint lines, we have 6 disjoint 2-flats and 1 line (disjoint from the 6
2-flats). Hence using CRM we get OA(25,11,4 x 16 x 8% x 23,2) which is
not included in Rains et al. (2002) and hence a new orthogonal array.

For maximal number of mutually exclusive 3-flats in OA(2", L, 2, 2), the maxi-
mal number of disjoint 3-flats (solids) in PG(r —1,2) depends on r. If 15| (2" —1),
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(where the number of points of any 3-flat in PG(r — 1,2) is 15) then there are
(2" —1)/(15) mutually exclusive 3-flats in PG(r — 1,2). Let B = OA(16,15,2,2).

Now,

(a)

(b)

(¢)

(d)

we will give some more examples.

Let A = OA(28,247, (2%)* x 2243,2). In PG(7,2), there are 85 disjoint lines.
Also a 3-flat can be obtained from the unions of 5 disjoint lines. Array
A have 4 1-flats and 243 points. Now these 243 points are the points of
81 disjoint lines. From these 81 disjoint lines, we have 16 3-flats (since
81 =16x5+1) and 1 line. All these 3-flats and line are mutually disjoint.
Hence we have OA (28,23, 4% x 1616 x 232).

Let A = OA(28,237,(22)% x (2%) x2%34,2). In PG(7,2), there are 17 disjoint
3-flats. There are 1 3-flats and 2 lines (disjoint) in array A. Also there are
234 points in the array. Here the 234 points are the points of 78 disjoint
lines. Thus, these 234 points are the points of 15 3-flats and 9 points. Hence
we have OA(2%,27,42 x 1616 x 29,2).

Let A = OA(28,241, (2°) x (2%)% x 2228 2). In the array, there are 1 line,
2 2-flats and 238 points. From 9 disjoint lines, i.e. a 3-flat and 4 lines we
can have 2 disjoint 2-flats and 13 points. The 238 points are the points
of 15 3-flats and 13 points since there are 17 3-flats (disjoint) in PG(7,2).
These 17 flats can be divided into 15 3-flats and 10 lines. Again using 9
lines out of 10 -lines we have 2 disjoint 2-flats and 13 points. Hence we have
OA(28,31,4 x 8% x 165 x 213,2).

Let A = OA(28,191,(22) x (2%) x 2189 2). There are 1 line, 1 5-flat and
189 points in the array. 5-flat is the points of unions of 21 disjoint lines.
Thus 189 points are points of the unions of 63 disjoint lines (85 — 22 = 63).
These 63 disjoint lines can be divided into 12 group of 5 disjoint lines and
3 disjoint lines. Unions of the points of 5 disjoint lines are the points of a
3-flat. Thus 189 points are the points of 12 disjoint 3-flats and 9 points (3
lines). Hence we have OA(28,23,4 x 64 x 162 x 29,2).

Let A = OA(28,219, (23) x (2%) x 2217, 2). The array A have 1 2-flat, 1 4-flat
and 217 points. Using 5 disjoint lines we have a 2-flat and 8 points. Again
from 21 disjoint lines we have 1 4-flat and 32 points. There are 85 disjoint
lines in PG(7,2). Thus 59 (i.e. 85 — (21 + 5)) disjoint lines can be divided
into 11 sets of 5 disjoint lines and 4 disjoint lines. 11 sets of 5 disjoint lines
correspond to 11 3-flats. The 217 points of the array correspond to the
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points of 11 3-flats, 52 points (i.e., 8 points from the 5 disjoint lines, 32
from the 21 disjoint lines and 12 points from the 4 disjoint lines). Hence
we have OA(28,65,8 x 32 x 1611 x 252)2).

We can also construct some new tight asymmetric orthogonal arrays using a
result given in Rains et al. (2002). We rewrite Lemma 12 given in Rains et al.
(2002) in terms of finite projective geometry, suited for our purpose.

LEMMA 3.1. Let Fy, Fy, F3 be three (k —1)-flats in PG(2k —1,m) such that
they are mutually disjoint, then their union can be replaced by 2% — 1 disjoint
1-flats (line) in PG(2k — 1, m).

We will make use of this Lemma to construct some more tight asymmetric
orthogonal arrays of strength 2 as explained below:

(a) Consider OA(25,21,8°% x 43 x 212)2). Here 2k = 6, k = 3. Thus F, F, F3
are 3 2-flats in PG(5,2) such that they are mutually disjoint. Then their
union can be replaced by 23 — 1 = 7 1-flats in PG(5,2). In the above array,
there are 6 columns with symbols 8. Hence, there are 6 disjoint 2-flats in
PG(5,2). Using the Lemma 3.1, out of these 6 disjoint 2-flats, consider the
first three disjoint 2-flats and replace their union by 7 1-flats. Finally the
6 columns with symbols 8 can be replaced by 14 columns with symbol 4.
Hence we have OA(26,29,47 x 47 x 43 x 2'2,2) = 0A(25,29,212 x 417.2)
which is not included in Rains et al. (2002).

(b) Consider OA(2%,11,4 x 16 x 8% x 23,2). Here 2k = 6, k = 3. Arguing
the same way as in (a) we have OA(26,19,4 x 16 x 47 x 47 x 23,2) =
OA(28,19,23 x 415 x 16, 2) which is not included in Rains et al. (2002) and
hence a new array. Consider PG(7,2) over GF(2). Here k = 4, m = 2.
Thus if there are three disjoint 3-flats in PG(7,2), then their union can be
replaced by 24 — 1 = 15 disjoint 1-flats in PG(7, 2).

In Table 3.2, we have tabulated some more new tight asymmetric orthogonal
arrays of strength 2 in the following table based on Lemma 3.1.

It may be remarked that some of the well known mixed partition of finite
projective spaces can be used to construct tight asymmetric orthogonal arrays of
strength 2.
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TABLE 3.2 New tight asymmetric orthogonal arrays

S. No. | Orthogonal Array Orthogonal Array using Lemma 3.1
1. OA(2%,23,4* x 16'° x 2%,2) OA(25,83,16 x 47° x 2°,2)
2. OA(2%,27,4° x 16 x 2°,2) OA(28,87,16 x 47" x 2°,2)
3. OA(2%,31,4 x 82 x 16" x 213,2) | OA(28,91,8% x 47 x 213, 2)
4. OA(2%,23,4 x 64 x 1672 x 2°,2) | OA(2%, 71,64 x 4% x 2°,2)
5. OA(2%,65,8 x 32 x 1611 x 2%2,2) | OA(2%,101,32 x 162 x 8 x 4% x 2°2,2)

1. Bierbrauer et al. (2001) have stated that the points of PG(3r — 1,m) can
be partitioned into the points of a subspace PG(2r — 1,m), the points of
a subspace PG(r — 1,m) and m” — 1 caps of size (m%" — 1)/(m — 1) each.
We have OA(m®,a + 2, (m?") x (m") x m%,2), where a=(m" — 1){(m? —
1)/(m —1)}. Let r =2, m = 2. Then

PG(5,2)
PG(3,2)

PG(1,2)
3 caps of size 15.

Hence we have OA(26,47, (24) x (22) x 2%3,2), which is same as Serial No.4
in Table 3.1.

2. Baker et al. (1999a) have given that PG(5,m) can be partitioned into 2-
planes and m® — 1 caps of size m? + m+ 1. We have OA(m®, a + 2, (m3)? x
m®,2) where @ = (m3 — 1)(m? + m +1). Let m = 2. Then we have
OA(28,51,(23)2 x 249 2) which is same as Serial No.5 in Table 3.1.

3. Kestenband (1981) constructed partitions using PG(2r — 1, m?) which con-
sist of 2 (r — 1)-dimensional subspaces and (m?™ — 1) caps of size (m?" —
1)/(m? — 1). Thus we have OA((m?)?",a + 2,(m?")2 x (m?)?,2), where
a = (m¥ — 1){(m? —10)/(m?® - 1)}. Let m = 2, r = 2. Then, we have
OA(4%,77, (4%)% x 47,2) which is same as Serial No. 17 in Table 3.1.

4. Baker et al. (1999b) have given that PG(3,m) can be divided into 2-lines
and (m— 1) hyperbolic quadrics. Thus we have OA(m*, a+2, (m?)? xm?, 2)
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where, a = (m — 1)(m + 1)%. Since, there are (m + 1)? points in any
hyperbolic quadric zy = zw, where z, y, z, w are in PG(3,m). Let m = 3.
Then we have OA(3%,34,(3%)? x 3%2,2) which is same as Serial No.15 in
Table 3.1.
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