Study on Operational Factors in a Nitrite-Accumulating Submerged Membrane Bioreactor

  • Yoo Ik-Keun (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Lim Kyoung-Jo (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Lee Won-Sik (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim Dong-Jin (Department of Environmental Systems Engineering, Hallym University) ;
  • Cha Gi-Cheol (Division of Environmental Engineering, Yonsei University)
  • Published : 2006.03.01

Abstract

Partial nitrification blocking of the oxidation of nitrite ($NO_{2}^{-}$) to nitrate ($NO_{3}^{-}$) has cost-efficient advantages such as lower oxygen and organics demand for nitrification and denitrification, respectively. A nitrifying membrane bioreactor of submerged type was operated for the treatment of synthetic ammonium wastewater with the purpose of nitrite build-up without affecting the efficiency of ammonium oxidation. A high ammonium concentration (1,000 mg/l) was completely converted to nitrate at up to 2 kg $N/m^3$ day under sufficient aeration. The control of pH under sufficient aeration was not a reliable strategy to maintain stable nitrite build-up. When the dissolved oxygen concentration was kept at 0.2-0.4 mg/l by adjusting the aeration rate, about 70% of nitrite content was obtained with ammonium oxidation efficiency higher than 93%. The increase of suction pressure due to membrane fouling was not significant under lowered aerating environment over a 6-month period of operation. The composition of nitrifier community, including relative abundance of nitrite oxidizers in a nitrite-accumulating condition, was quantified by fluorescence in situ hybridization analysis.

Keywords

References

  1. Abelling, U. and C. F. Seyfried. 1992. Anaerobic-aerobic treatment of high strength ammonium wastewater-nitrogen removal using nitrite. Wat. Sci. Technol. 26: 1007-1015 https://doi.org/10.2166/wst.1992.0542
  2. Ahn, I. S., M. W. Kim, H. J. La, K. M. Choi, and J. C. Kwon. 2003. Bacterial community composition of activated sludge relative to type and efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15-21
  3. Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Wat. Pollut. Control Fed. 48: 835-852
  4. APHA. 1992. Standard Methods for the Examination of Water and Wastewater. 18th Ed. APHA. Washington DC, U.S.A
  5. Balmelle, B., M. Nguyen, B. Capdeville, J. C. Cornier, and A. Deguin. 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Sci. Technol. 26: 1017-1025 https://doi.org/10.2166/wst.1992.0543
  6. Bernet, N., P. Dangcong, J.-P. Delgenes, and R. Moletta. 2001. Nitrification at low oxygen concentration in biofilm reactor. J. Environ. Eng.-ASCE 127: 266-271 https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(266)
  7. Garrido, J. M., W. A. J. van Benthum, M. C. M. van Loosdrecht, and J. J. Heijnen. 1997. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53: 168-178 https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
  8. Ghyoot, W., S. Vandaele, and W. Verstraete. 1999. Nitrogen removal from sludge reject water with a membrane-assisted bioreactor. Wat. Res. 33: 23-32 https://doi.org/10.1016/S0043-1354(98)00190-0
  9. Gil, K. I. and E. S. Choi. 2002. Estimation of nitrite concentration in the biological nitritation process using enzymatic inhibition kinetics. J. Microbiol. Biotechnol. 12: 377-381
  10. Hellinga, C., A. A. J. C. Schellen, J. W. Mulder, M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. The Sharon process: An innovative method for nitrogen removal from ammoniumrich wastewater. Wat. Sci. Technol. 37: 135-142
  11. Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385- 393 https://doi.org/10.1159/000075126
  12. Joo, S. H., D. J. Kim, I.-K. Yoo, K. Park, and G. C. Cha. 2000. Partial nitrification in an upflow biological aerated filter by $O_2$ limitation. Biotechnol. Lett. 22: 937-940 https://doi.org/10.1023/A:1005646632504
  13. Kim, D. J., J. S. Chang, D. I. Lee, D. W. Han, I.-K. Yoo, and G. C. Cha. 2003. Nitrification of high strength ammonia wastewater and nitrite accumulation characteristics. Wat. Sci. Technol. 47: 45-51
  14. Kim, S. H., S. H. Song, and Y. J. Yoo. 2004. The pH as a control parameter for oxidation-reduction potential on the denitrification by Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 14: 639-642
  15. Kim, W. K., R. Cui, and D. Jahng. 2005. Enrichment of ammonia-oxidizing bacteria for efficient nitrification of wastewater. J. Microbiol. Biotechnol. 15: 772-779
  16. Liebig, T., M. Wagner, L. Bjerrum, and M. Denecke. 2001. Nitrification performance and nitrifier community composition of a chemostat and a membrane-assisted bioreactor for the nitrification of sludge reject water. Bioproc. Biosys. Eng. 24: 203-210 https://doi.org/10.1007/s004490100234
  17. Manz, W., R. Amann, W. Ludwig, M. Wagner, and K. H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. System. Appl. Microbiol. 15: 593-600 https://doi.org/10.1016/S0723-2020(11)80121-9
  18. Mauret, M., E. Paul, E. Puech-Costes, M. T. Maurette, and P. Baptiste. 1996. Application of experimental research methodology to the study of nitrification in mixed culture. Wat. Sci. Technol. 34: 245-252
  19. Mulder, J. W., A. A. van de Graaf, L. A. Robertson, J. G. Kuenen. 2001. Full-scale application of the Sharon process for the treatment of rejection water of digested sludge dewatering. Wat. Sci. Technol. 43: 127-134 https://doi.org/10.2166/wst.2001.0675
  20. Painter, H. A. and J. E. Loveless. 1983. Effect of temperature and pH value on the growth rate constants of nitrifying bacteria in the activated sludge process. Wat. Res. 17: 237- 248 https://doi.org/10.1016/0043-1354(83)90176-8
  21. Park, E. J., J. K. Seo, J. K. Kim, K. H. Suh, and S. K. Kim. 2000. Denitrification characteristics and microorganism composition of acclimated denitrifier consortium. J. Microbiol. Biotechnol. 10: 410-414
  22. Pollice, A., V. Tandoi, and C. Lestingi. 2002. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Wat. Res. 36: 2541-2546 https://doi.org/10.1016/S0043-1354(01)00468-7
  23. Ruiz, G., D. Jeison, and R. Chamy. 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Wat. Res. 37: 1371- 1377 https://doi.org/10.1016/S0043-1354(02)00475-X
  24. Shim, J. K., I.-K. Yoo, and Y. M. Lee. 2002. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor. Process Biochem. 38: 279-285 https://doi.org/10.1016/S0032-9592(02)00077-8
  25. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509. J. Microbiol. Biotechnol. 13: 473-476
  26. Turk, O. and D. S. Mavinic 1989. Maintaining nitrite buildup in a system acclimated to free ammonia. Wat. Res. 23: 1383-1388 https://doi.org/10.1016/0043-1354(89)90077-8
  27. Wiesmann, U. 1994. Biological nitrogen removal from wastewater, pp. 113-154. In A. Fiechter (ed.), Advances in Biochemical Engineering. Springer-Verlag, Berlin
  28. Yun, H. J. and D. J. Kim. 2003. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor. J. Chem. Technol. Biotechnol. 78: 377-383 https://doi.org/10.1002/jctb.751