Preparation of Kimchi Containing Bifidobacterim animalis DY-64

  • Chae Myoung-Hee (Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University) ;
  • Jhon Deok-Young (Department of Food and Nutrition and Human Ecology Research Institute, Chonnam National University)
  • 발행 : 2006.03.01

초록

Aero-tolerant microorganisms were isolated from healthy Koreans over the age of 95 years. The microorganisms were then identified based on their morphological and biochemical characteristics and 16S rDNA sequences. The growth properties of the isolated strains were investigated in kimchi. The characteristics of kimchi containing the microorganisms were studied microscopically, physicochemically, and organoleptically. Among 7 aero-tolerant strains, a strain with a 16S rDNA sequence exhibiting 99% homology with Bifidobacterim animalis strain B83 was selected and named B. animalis DY-64. The new strain showed a better acid resistance and salt resistance (p<0.05) than B. animalis ATCC 25527. After 15 days of fermentation in kimchi, the viability of B. animalis DY-64 was about 10%, and the kimchi had a better overall edible quality than conventional kimchi. Thus, it was found that the application of B. animalis DY-64 to kimchi preparation produced a good overall edible quality.

키워드

참고문헌

  1. Ahn, J. B., K. Y. Kim, and J. H. Park. 1998. Isolation and characterization of oxygen-tolerant mutant Bifidobacterium longum. Kor. J. Appl. Microbiol. Biotechnol. 26: 476-482
  2. Arunachalam, K. D. 1999. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 19: 1559- 1597 https://doi.org/10.1016/S0271-5317(99)00112-8
  3. Cho, J. S. 1988. Chemical characteristics of kimchi. Food Sci. 21: 25-30
  4. Gomes, A. M. P. and F. X. Malcata. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10: 139-157 https://doi.org/10.1016/S0924-2244(99)00033-3
  5. Grill, J. P., J. Crociani, and J. Ballongue. 1995. Characterization of fructose-6-phosphoketolase purified from bifidobacteria species. Curr. Microbiol. 31: 49-54 https://doi.org/10.1007/BF00294634
  6. Jeon, K. S., I. K. Hwang, and G. E. Ji. 2002. Assay of $\beta$- glucosidase activity of bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12: 8-13
  7. Jung, H. K., E. R. Kim, G. E. Ji, J. H. Park, S. K. Cha, and S. L. Juhn. 2000. Comparative evaluation of probiotic activities of Bifidobacterium longum MK-G7 with commercial bifidobacteria strains. J. Microbiol. Biotechnol. 10: 147- 153 https://doi.org/10.1159/000016044
  8. Kim, H. Y., J. O. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265- 268 https://doi.org/10.1159/000090402
  9. Kim, J. I. 2002. Social-environment factors by region of centenarians. J. Korea Gerontol. Soc. 21: 157-168
  10. Kim, T. W., A. K. Park, G. R. Kim, J. M. Lee, D. K. Chung, and H. Y. Kim. 2003. Characterization of functional kimchi using Bifidobacterium lactis. Korean J. Food Sci. Technol. 35: 924-927
  11. Lee, H. S., Y. T. Ko, and S. J. Lim. 1984. Effects of protein sources on kimchi fermentation and on the stability of ascorbic acid. Korean J. Nutr. 17: 101-105
  12. Lee, K. E., U. H. Choi, and G. E. Ji. 1996. Effects of kimchi intake on the composition of human large intestinal bacteria. Korean J. Food Sci. Technol. 28: 981-986
  13. Lee, S. K., G. E. Ji, and Y. H. Park. 1999. The viability of bifidobacteria introduced into kimchi. Lett. Appl. Microbiol. 28: 153-156 https://doi.org/10.1046/j.1365-2672.1999.00380.x
  14. Modler, H. W., R. C. McKellar, H. D. Goff, and D. A. Mackie. 1990. Using icecream as a mechanism to incorporated bifidobacteria and fructooligosaccharides into the human diet. Culture Dairy Prod. J. 25: 4-6
  15. Murti, T. W., C. Bouillanne, M. Landon, and M. J. Desmazeaud. 1993. Bacterial growth and volatile compounds in yogurttype products from soymilk containing Bifidobacterium ssp. J. Food Sci. 58: 153-156 https://doi.org/10.1111/j.1365-2621.1993.tb03233.x
  16. Om, A. S., S. Y. Park, I. K. Hwang, and G. E. Ji. 1999. Comparison of nitric oxide, hydrogen peroxide, and cytokine production in RAW 264.7 cells by Bifidobacterium and other intestinal bacteria. J. Microbiol. Biotechnol. 9: 98-105
  17. O'Sullivan, D. and M. J. Kullen. 1998. Tracking of probiotic bifidobacteria in the intestine. Int. Dairy J. 8: 513-525 https://doi.org/10.1016/S0958-6946(98)00079-X
  18. Salminen, S. and A. V. Wright. 1998. Bifidobacteria and probiotic action, pp. 519-587. Lactic Acid Bacteria, Microbiology and Functional Aspects. 2nd Ed. Marcel Dekker, Inc. New York, U.S.A
  19. SAS Institute, Inc. 1990. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, U.S.A
  20. Scardovi, V. 1986. Genus Bifidobacterium, pp. 1423. In: Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, Baltimore, Maryland, U.S.A
  21. Shin, M. S., J. J. Lee, S. H. Na, H. S. Bae, C. S. Huh, and Y. J. Baek. 1998. Characteristics of Bifidobacterium spp. isolated from Korean feces for probiotics. Korean J. Dairy Sci. 20: 273-282
  22. Venema, K. and A. J. H. Mathuis. 2003. A PCR-based method for identification of bifidobacteria from the human alimentary tract at the species level. FEMS Microbiol. 224: 143-149 https://doi.org/10.1016/S0378-1097(03)00436-1
  23. Wang, Y. C., R. C. Yu, and C. C. Chou. 2002. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol. 19: 501-508 https://doi.org/10.1006/fmic.2002.0506