Inulooligosaccharide Production from Inulin by Saccharomyces cerevisiae Strain Displaying Cell-Surface Endoinulinase

  • Kim Hyun-Chul (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim Hyun-Jin (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Choi Woo-Bong (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Nam Soo-Wan (Department of Biotechnology & Bioengineering, Dong-Eui University)
  • Published : 2006.03.01

Abstract

The endoinulinase gene (inu1) from Pseudomonas mucidolens was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane anchored protein, Aga1p. The inu1 gene of P. mucidolens was subcloned into the surface display vector, pCTcon (GAL1 promoter). The constructed plasmid, pCTENIU (8.5kb), was then introduced to S. cerevisiae EBY100 cells and the yeast transformants selected on synthetic defined media lacking uracil and inulin-containing media. The inu1 gene under the control of the GAL1 promoter was successfully expressed in the yeast transformants, and the surface display of endoinulinase confirmed by immunofluorescence microscopy, along with its enzymatic ability to form inulooligosaccharides (IOSs) from inulin. The total endoinulinase activity reached about 2.31 units/ml when the yeast transform ants were cultivated on a YPDG medium. To efficiently hydrolyze the inulin, various reaction conditions were examined, including the pH, temperature, and inulin source. The optimized conditions were then determined as follows: pH, 7.0; temperature, $50^{\circ}C$; inulin source, Jerusalem artichoke. Under the optimized condition and 46 units of endoinulinase per g of inulin, IOSs started to be produced after 10 min of enzymatic reaction. The highest yield, 71.2% of IOSs, was achieved after 30 h of reaction without any significant loss of the initial enzyme activity. As a result of the reaction with inulin, IOSs consisting of inulobiose (F2), inulotriose (F3), inulotetraose (F4), and inulopentaose (F5) were produced, and F4 was the major product.

Keywords

References

  1. Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557 https://doi.org/10.1038/nbt0697-553
  2. Chiswell, D. J. and J. McCafferty. 1992. Phage antibodies: Will new 'coliclonal' antibodies replace monoclonal antibodies? Trends Biotechnol. 10: 80-84 https://doi.org/10.1016/0167-7799(92)90178-X
  3. Cho, Y. J., J. Sinha, J. P. Park, and J. W. Yun. 2001. Production of inulooligosaccharides from inulin by a dual endoinulinase system. Enz. Microb. Technol. 29: 428-433 https://doi.org/10.1016/S0141-0229(01)00414-8
  4. Cho, B. K., M. C. Kieke, E. T. Boder, K. D. Wittrup, and D. M. Kranz. 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220: 179-188 https://doi.org/10.1016/S0022-1759(98)00158-6
  5. Cochran, J. R., Y. S. Kim, M. J. Olsen, R. Bhandari, and K. D. Wittrup. 2004. Domain level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J. Immunol. Methods 287: 147-158 https://doi.org/10.1016/j.jim.2004.01.024
  6. Cappellaro, C., C. Baldermann, R. Rache, and W. Tanner. 1994. Mating type-specific cell-cell recoginition of Saccharomyces cerevisiae: Cell wall attachment and active sites of a- and $\alpha$-agglutinin. EMBO J. 13: 4737-4744
  7. Daugherty, P. S., M. J. Olsen, B. L. Inverson, and G. Georgiou. 1999. Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng. 12: 613-621 https://doi.org/10.1093/protein/12.7.613
  8. Dubios, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimeric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  9. Eom, S. J., Y. M. Kwon, and Y. J. Choi. 1995. Molecular cloning of Pseudomonas sp. inulinase gene and its expression in E. coli. Kor. J. Appl. Microbiol. Biotechnol. 23: 550-555
  10. Ezaki, S., M. Tsukio, M. Takagi, and T. Imanaka. 1998. Display of heterologous gene products on the Escherichia coli cell surface as fusion proteins with flagellin. J. Ferment. Bioeng. 86: 500-503 https://doi.org/10.1016/S0922-338X(98)80159-1
  11. Hiroko, S., M. Takeshi, F. Hideki, and K. Akihiko. 2004. Molecular engineering of Rhizopus oryzae lipase using a combinatorial protein library constructed on the yeast cell surface. J. Mol. Catal. B: Enzym. 8: 235-239
  12. Ito, H. Y., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
  13. Jeong, T. H., H. O. Kim, J. N. Park, H. J. Lee, D. J. Shin, H. B. Lee, S. B. Chun, and S. Bai. 2001. Cloning and sequencing of the $\beta$-amylase gene from Paenibacillus sp. and its expression in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11: 65-71
  14. Jin, Z., J. Wang, B. Jiang, and X. Xu. 2005. Production of inulooligosaccharides by endoinulinases from Aspergillus ficuum. Food Res. Int. 38: 301-308 https://doi.org/10.1016/j.foodres.2004.04.011
  15. Kim, D. H., Y. J. Choi, S. K. Song, and J. W. Yun. 1997. Production of inulo-oligosaccharides using endo-inulinase from Pseudomonas sp. Biotechnol. Lett. 19: 369-371 https://doi.org/10.1023/A:1018311219788
  16. Kim, K. Y., M. D. Kim, N. S. Han, and J. H. Seo. 2002. Display of Bacillus macerans cyclodextrin glucanotransferase on cell surface of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 12: 411-416
  17. Kim, Y. H., S. W. Nam, and B. H. Chung. 1998. Simultaneous saccharification of inulin and ethanol fermentation by recombinant Saccharomyces cerevisiae secreting inulinase. Biotechnol. Bioproc. Eng. 3: 55-60 https://doi.org/10.1007/BF02932502
  18. Kobori, H., M. Sato, and M. Osumi. 1992. Relationship of actin organization to growth in the two forms of the dimorphic yeast Candida tropicalis. Protoplasma 167: 193- 204 https://doi.org/10.1007/BF01403383
  19. Lipke, P. N. and J. Kurjan. 1992. Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56: 180-194
  20. Lipke, P. N., D. Wojcienchowicz, and J. Kurjan. 1989. AG$\alpha$1 is the structural gene for the Saccharomyces cerevisiae $\alpha$-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol. Cell. Biol. 9: 3155-3165 https://doi.org/10.1128/MCB.9.8.3155
  21. Matsumoto, T., M. Ito, H. Fukuda, and A. Kondo. 2004. Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl. Microbiol. Biotechnol. 64: 481-485 https://doi.org/10.1007/s00253-003-1486-1
  22. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  23. Murai, T., M. Ueda. H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Imanaka, and A. Tanaka. 1999. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl. Microbiol. Biotechnol. 51: 65-70 https://doi.org/10.1007/s002530051364
  24. Murai, T., M. Ueda, H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Kawaguichi, M. Arai, and A. Tanaka. 1997. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48: 499-503 https://doi.org/10.1007/s002530051086
  25. Nakamura, T., Y. Nagamoto, S. Hamada, Y. Nishino, and K. Ohta. 1994. Occurrence of two forms of extracellular endoinulinase from Aspergillus niger mutant 817. J. Ferment. Bioeng. 78: 134-139 https://doi.org/10.1016/0922-338X(94)90251-8
  26. Ohta, K., S. Hamada, and T. Nakamura. 1993. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 729-733
  27. Oku, T., T. Tokunaga, and N. Hosoya. 1984. Nondigestibility of a new sweetener, 'Neosugar' in the rat. J. Nutr. 114: 1574-1581 https://doi.org/10.1093/jn/114.9.1574
  28. Roberfroid, M. B., J. A. E. van-Loo, and G. R. Gibson. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128: 11-19
  29. Roberfroid, M. 1993. Dietary fiber, inulin, and oligofructose. A review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33: 103-148 https://doi.org/10.1080/10408399309527616
  30. Schreuder, M. P., S. Brekelmans, H. van den Ende, and F. M. Klis. 1993. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9: 399-409 https://doi.org/10.1002/yea.320090410
  31. Shin, H. J., J. M. Park, and J. W. Yang. 1998. Continuous production of galactooligosaccharides from lactose by Ballera singularis $\beta$-galactosidase immobilized in chitosan beads. Proc. Biochem. 33: 787-792
  32. Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 61-65
  33. Vandamme, E. J. and D. G. Derycke. 1983. Microbial inulinase: Fermentation process, properties, and applications. Adv. Appl. Microbiol. 29: 139-176 https://doi.org/10.1016/S0065-2164(08)70356-3
  34. Wang, X. D. and S. K. Rakshit. 2000. Iso-oligosaccharides production by multiple forms of transferase enzymes from Aspersillus foetidus. Proc. Biochem. 33: 771-775
  35. Wojciech, K., B. Wojciech, O. Artur, J. Tomasz, and G. Wlodzimierz. 2003. Characteristics of oligosaccharides produced by enzymatic hydrolysis of potato starch using mixture of pullulanases and alpha-amylases. Food Sci. Technol. 6: 2
  36. Yasuya, F., K. Satoshi, M. Ueda, A. Tanaka, J. Okada, Y. Morikawa, H. Fukuda, and A. Kondo. 2002. Construction of whole-cell biocatalyst for xylan degradation through cellsurface xylanase display in Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym. 17: 189-195 https://doi.org/10.1016/S1381-1177(02)00027-9
  37. Yun, J. W., Y. J. Choi, C. H. Song, and S. K. Song. 1999. Microbial production of inulo-oligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. J. Biosci. Bioeng. 87: 291-295 https://doi.org/10.1016/S1389-1723(99)80034-6
  38. Yun, J. W., D. H. Kim, B. W. Kim, and S. K. Song. 1997. Production of inulooligosaccharides from inulin by immobilized endoinulinase from Pseudomonas sp. J. Ferment. Bioeng. 84: 369-371 https://doi.org/10.1016/S0922-338X(97)89263-X
  39. Yun, J. W. 1996. Fructooligosaccharides - occurrence, preparation, and application. Enz. Microb. Technol. 19: 107- 117 https://doi.org/10.1016/0141-0229(95)00188-3