Tyrosine Phenol-Lyase의 고속탐색기술 개발 및 방향성 분자진화

High Throughput Screening and Directed Evolution of Tyrosine Phenol-Lyase

  • 최수림 (한국생명공학연구원 시스템미생물연구센터) ;
  • 나유진 (한국생명공학연구원 시스템미생물연구센터) ;
  • 김도영 (한국생명공학연구원 시스템미생물연구센터) ;
  • 송재준 (한국생명공학연구원 시스템미생물연구센터) ;
  • 홍승표 (바이오리더스) ;
  • 성문희 (바이오리더스, 국민대학교 생명나노화학과) ;
  • 이승구 (한국생명공학연구원 시스템미생물연구센터)
  • 발행 : 2006.03.01

초록

티로신 및 방향족 아미노산 유도체의 생물학적 합성에 이용되는 유용 효소인 tyrosine phenol-lyase(TPL) 활성을 평판배지에서 정량적으로 감지할 수 있는 기술을 개발하였다. 불투명 평판배지(turbid plate)의 제조과정은 먼저, 2 N염산과 DMSO로 조성된 공용매에 난용성 티로신을 400 mM 농도로 녹여서 배지에 가하고, 온도를 조절하여 니들형 티로신을 형성하도록 결정화를 유도하는 것이었다. 니들형 티로신은 일반적인 컬럼형에 비하여 약 $5{\sim}6$배 낮은 농도인 3.6g/L에서도 불투명 평판배지를 제조할 수 있었으며, 효소활성에 의하여 쉽게 분해되고, TPL활성의 고감도 고속탐색기술 개발에 적합하였다. 이 불투명 평판배지에 변이유발PCR법으로 제조한 TPL 라이브러리를 도말하고, 단일 콜로니 주변에서 형성되는 투명환의 크기와 실측한 TPL활성을 비교한 결과 직접적인 비례관계가 있음을 확인하였다. 따라서 난용성 물질의 미세입자를 평판배지에서 직접 발생시킨 후, 효소활성에 의한 투명환의 형성을 정량 관찰하는 본 연구의 방법은 신규 고활성 TPL의 분리 및 방향성 분자진화 등을 위한 고속탐색기술에 유용하게 사용될 수 있다.

Rapid assay of enzyme is a primary requirement for successful application of directed evolution technology. Halo generation on a turbid plate would be a method of choice for high throughput screening of enzymes in this context. Here we report a new approach to prepare turbid plates, by controlling the crystallization of tyrosine to form needle-like particles. In the presence of tyrosine phenol-lyase (TPL), the needle-like tyrosine crystals were converted to soluble phenol rapidly than the usual rectangular tyrosine crystals. When an error-prone PCR library of Citrobacter freundii TPL was spread on the turbid plate, approximately 10% of the colonies displayed recognizable halos after 24 hours of incubation at $37^{\circ}C$. Representative positives from the turbid plates were transferred to LB-medium in 96-wellplates, cultivated overnight, and assayed for the enzyme activity with L-tyrosine as the substrate. The assay results were approximated to be proportional to the halo size on turbid plates, suggesting the screening system is directly applicable to the directed evolution of TPL. Actually, two best mutants on the turbid plates were identified to be $2{\sim}2.5$ and 1.5-fold improved in the activity.

키워드

참고문헌

  1. Barbolina, M. Y., R. S. Phillips, P. D. Gollnick, N. G. Faleev, and T. V. Demidkina. 2000. Citrobacter freundii tyrosine phenol-lyase: the role of asparagine 185 in modulating enzyme function through stabilization of a quinonoid intermediate. Protein Eng. 13: 207-215 https://doi.org/10.1093/protein/13.3.207
  2. Faleev, N. G, S. N. Spirina, V. S. Ivoilov, T. V. Demidkina, and R. S. Phillips. 1996. The catalytic mechanism of tyrosine phenol-lyase from Erwinia herbicola: the effect of substrate structure on pH-dependence of kinetic parameters in the reactions with ring-substituted tyrosines. Z Naturforsch [C]. 51: 363-370 https://doi.org/10.1515/znc-1996-5-613
  3. Iwamori, S., S. Yohino, K.-I. Ishiwata, and N. Makiguchi. 1991. Structure of tyrosine phenol-lyase genes from Citrobacter freundii and structural comparison with tryptophanase from Escherichia coli. J. Ferment. Bioeng. 72: 147-151 https://doi.org/10.1016/0922-338X(91)90207-W
  4. Kiick, D. M. and R. S. Phillips. 1988. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase. Biochemistry 27: 7333-7338 https://doi.org/10.1021/bi00419a023
  5. Kuchner, O. and F. H. Arnold. 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15: 523-530 https://doi.org/10.1016/S0167-7799(97)01138-4
  6. Kumagai, H., H. Yamada, H. Matsui, H. Ohkishi, and K. Ogata. 1970. Tyrosine phenol lyase. I. Purification, crystallization, and properties. J. Biol. Chem. 245: 1767-1772
  7. Lee, S. G, S. P. Hong, Y. H. Choi, Y. J. Chung, and M. H. Sung. 1997. Thermostable tyrosine phenol-lyase of Syrnbiobacterium sp. SC-I: gene cloning, sequence determination, and overproduction in Escherichia coli. Protein Expr. Purif. 11: 263-270 https://doi.org/10.1006/prep.1997.0792
  8. Lee, S. G, S. P. Hong, M. S. Kwak, N. Esaki, and M. H. Sung. 1999. Characterization of thermostable tyrosine phenol-lyase from an obligatory symbiotic thermophile, Symbiobacteriurn sp. SC-1. J. Biochem. Mol. Biol. 32: 480-485
  9. Olsen, M., B. Iverson, and G. Georgiou. 2000. High-throughput screening of enzyme libraries. Curr. Opin. Biotechnoi. 11: 331-337 https://doi.org/10.1016/S0958-1669(00)00108-7
  10. Otey, C. R. and J. M. Joern. 2003. High-throughput screen for aromatic hydroxylation, in Methods in Molecular Biology: Directed enzyme evolution pp 141, Human Press Inc., NJ
  11. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY